Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RMderiv

Gradient of a field


Description

RMderiv is a multivariate covariance model which models a field and its gradient.

For an isotropic covariance model varphi, the covariance C given by RMderiv equals

C_{11}(x,y) = \varphi(\| x - y\|)

C_{j1}(x,y) = -C_{1j}(x,y) = \partial \varphi(\|x - y\|) / \partial x

C_{i,j}(x,y) = \partial^2 \varphi(\|x - y\|) / \partial x \partial y

for i,j = 2,…, d where d is the dimension of the field.

Usage

RMderiv(phi, which, var, scale, Aniso, proj)

Arguments

phi

a univariate stationary covariance model (in 2 or 3 dimensions).

which

vector of integers. If not given all components are returned; otherwise the selected components are returned.

var,scale,Aniso,proj

optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

RMderiv returns an object of class RMmodel.

Author(s)

References

  • Matheron

See Also

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

model <- RMderiv(RMgauss(), scale=4)
plot(model, dim=2)

x.seq <- y.seq <- seq(-10, 10, 0.4)
simulated <- RFsimulate(model=model, x=x.seq, y=y.seq)

plot(simulated)

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.