Matrix operator
RMmatrix
is a multivariate covariance model
depending on one multivariate covariance model, or
one or several univariate covariance models C0,….
The corresponding covariance function is given by
C(h) = M phi(h) M^t
if a multivariate case is given. Otherwise it returns a matrix
whose diagonal elements are filled with the univarate model(s)
C0
, C1
, etc, and the
offdiagonals are all zero.
RMmatrix(C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, M, vdim, var, scale, Aniso, proj)
C0 |
a k-variate covariance |
C1,C2,C3,C4,C5,C6,C7,C8,C9 |
optional univariate models |
M |
a k times k matrix, which is multiplied from left and right to the given model; M may depend on the location, hence it is then a matrix-valued function and C will be non-stationary with C(x, y) = M(x) phi(x, y) M(y)^t |
vdim |
positive integer. This argument should be given if and only
if a multivariate model is created from a single univariate model and
|
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
RMmatrix
also allows variogram models are arguments.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again ## Not run: ## first example: bivariate Linear Model of Coregionalisation x <- y <- seq(0, 10, 0.2) model1 <- RMmatrix(M = c(0.9, 0.43), RMwhittle(nu = 0.3)) + RMmatrix(M = c(0.6, 0.8), RMwhittle(nu = 2)) plot(model1) simu1 <- RFsimulate(RPdirect(model1), x, y) plot(simu1) ## second, equivalent way of defining the above model model2 <- RMmatrix(M = matrix(ncol=2, c(0.9, 0.43, 0.6, 0.8)), c(RMwhittle(nu = 0.3), RMwhittle(nu = 2))) simu2 <- RFsimulate(RPdirect(model2), x, y) stopifnot(all.equal(as.array(simu1), as.array(simu2))) ## third, equivalent way of defining the above model model3 <- RMmatrix(M = matrix(ncol=2, c(0.9, 0.43, 0.6, 0.8)), RMwhittle(nu = 0.3), RMwhittle(nu = 2)) simu3 <- RFsimulate(RPdirect(model3), x, y) stopifnot(all(as.array(simu3) == as.array(simu2))) ## End(Not run) ## second example: bivariate, independent fractional Brownian motion ## on the real axis x <- seq(0, 10, 0.1) modelB <- RMmatrix(c(RMfbm(alpha=0.5), RMfbm(alpha=1.5))) ## see the Note above print(modelB) simuB <- RFsimulate(modelB, x) plot(simuB) ## third example: bivariate non-stationary field with exponential correlation ## function. The variance of the two components is given by the ## variogram of fractional Brownian motions. ## Note that the two components have correlation 1. x <- seq(0, 10, 0.1) modelC <- RMmatrix(RMexp(), M=c(RMfbm(alpha=0.5), RMfbm(alpha=1.5))) print(modelC) simuC <- RFsimulate(modelC, x, x, print=1) #print(as.vector(simuC)) plot(simuC)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.