Trend Modelling
The coding of trends, in particular multivariate trends, will be described here.
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
data(ca20) ## data set originally from geoR head(ca20.df) RFoptions(coordnames=c("east", "north"), varnames="data") ## covariance model with variance, scale and nugget to be estimated; ## just to abbreviate later on M <- RMexp(var=NA, scale=NA) + RMnugget(var=NA) ## short definition of a trend using the fact that ca20.df is a ## data.frame ca20.RFmod02 <- ~ 1 + altitude + M (ca20.fit02.RF <- RFfit(ca20.RFmod02, data=ca20.df, M=M)) ## long definition which also allows for more general constructions ca20.RFmod02 <- NA + NA*RMcovariate(ca20.df$altitude) + M (ca20.fit02.RF <- RFfit(ca20.RFmod02, data=ca20.df)) ## Note that the following also works. ## Here, the covariance model must be the first summand ca20.RFmod02 <- M + NA + ca20.df$altitude print(ca20.fit02.RF <- RFfit(ca20.RFmod02, data=ca20.df)) ### The following does NOT work, as R assumes (NA + ca20.df$altitude) + M ### In particular, the model definition gives a warning, and the ### RFfit call gives an error: (ca20.RFmod02 <- NA + ca20.df$altitude + M) try(ca20.fit02.RF <- RFfit(ca20.RFmod02, data=ca20.df)) ### error ... ## factors: ca20.RFmod03 <- ~ 1 + area + M ### (ca20.fit03.RF <- RFfit(ca20.RFmod03, data=ca20.df, M=M))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.