Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RMmultiquad

The Multiquadric Family Covariance Model on the Sphere


Description

RMmultiquad is an isotropic covariance model. The corresponding covariance function, the multiquadric family, only depends on the angle 0 ≤ θ ≤ π between two points on the sphere and is given by

ψ(θ) = (1 - δ)^{2*τ} / (1 + delta^2 - 2*δ*cos(θ))^{τ},

where 0 < δ < 1 and τ > 0.

Usage

RMmultiquad(delta, tau, var, scale, Aniso, proj)

Arguments

delta

a numerical value in (0,1)

tau

a numerical value greater than 0

var,scale,Aniso,proj

optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Details

Special cases (cf. Gneiting, T. (2013), p.1333) are known for fixed parameter τ=0.5 which leads to the covariance function called 'inverse multiquadric'

ψ(θ) = (1 - δ) / √( 1 + delta^2 - 2*δ*cos(θ) )

and for fixed parameter τ=1.5 which gives the covariance function called 'Poisson spline'

ψ(θ) = (1 - δ)^{3} / (1 + delta^2 - 2*δ*cos(θ))^{1.5}.

For a more general form, see RMchoquet.

Value

RMmultiquad returns an object of class RMmodel.

Author(s)

References

Gneiting, T. (2013) Strictly and non-strictly positive definite functions on spheres Bernoulli, 19(4), 1327-1349.

See Also

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

RFoptions(coord_system="sphere")
model <- RMmultiquad(delta=0.5, tau=1)
plot(model, dim=2)

## the following two pictures are the same

x <- seq(0, 0.12, 0.01)
z1 <- RFsimulate(model, x=x, y=x)
plot(z1)

x2 <- x * 180 / pi
z2 <- RFsimulate(model, x=x2, y=x2, coord_system="earth")
plot(z2)

stopifnot(all.equal(as.array(z1), as.array(z2)))

RFoptions(coord_system="auto")

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.