Simulation of Max-Stable Random Fields
Here, a list of models and methods for simulating max-stable random fields is given.
See also maxstableAdvanced for more advanced examples.
Models
RPbrownresnick |
Brown-Resnick process
using an automatic choice of the 3 RPbr* methods below |
RPopitz |
extremal t process |
RPschlather |
extremal Gaussian process |
RPsmith |
M3 processes |
Methods
RPbrmixed |
simulation of Brown-Resnick processes using M3 representation |
RPbrorig |
simulation of Brown-Resnick processes using the original definition |
RPbrshifted |
simulation of Brown-Resnick processes using a random shift |
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
Kabluchko, Z., Schlather, M. & de Haan, L (2009) Stationary max-stable random fields associated to negative definite functions Ann. Probab. 37, 2042-2065.
Schlather, M. (2002) Models for stationary max-stable random fields. Extremes 5, 33-44.
Smith, R.L. (1990) Max-stable processes and spatial extremes Unpublished Manuscript.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again ### currently not programmed ## Not run: \dontshow{ ## to do : seq(0, 10, 0.02) oben ist furchtbar langsam. Warum? } ## End(Not run) ## Not run: \dontshow{ model <- RMball() x <- seq(0, 10, 5) # nice for x <- seq(0, 10, 0.02) z <- RFsimulate(RPsmith(model, xi=0), x, n=1000, every=1000) plot(z) hist(unlist(z@data), 150, freq=FALSE) #not correct; to do; sqrt(2) wrong curve(exp(-x) * exp(-exp(-x)), from=-3, to=8, add=TRUE, col=3) } ## End(Not run) model <- RMgauss() x <- seq(0, 10, 0.05) z <- RFsimulate(RPschlather(model, xi=0), x, n=1000) plot(z) hist(unlist(z@data), 50, freq=FALSE) curve(exp(-x) * exp(-exp(-x)), from=-3, to=8, add=TRUE) ## for some more sophisticated models see maxstableAdvanced
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.