Fast and Exact Simulation of Large Gaussian Lattice Systems in R2
Here, the code of the paper on ‘Fast and Exact Simulation of Large Gaussian Lattice Systems in R2’ is given.
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
Gneiting, T., Sevcikova, H., Percival, D.B., Schlather, M., Jiang, Y. (2006) Fast and Exact Simulation of Large Gaussian Lattice Systems in R2: Exploring the Limits. J. Comput. Graph. Stat., 15, 483-501.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again ## Figure 1 (pretty time consuming) stabletest <- function(alpha, theta, size=512) { RFoptions(trials=1, tolIm = 1e-8, tolRe=0, force = FALSE, useprimes=TRUE, strategy=0, skipchecks=!FALSE, storing=TRUE) model <- RMcutoff(diameter=theta, a=1, RMstable(alpha=alpha)) RFcov(dist=0, model=model, dim=2, seed=0) r <- RFgetModelInfo(modelname="RMcutoff", level=3)$storage$R_theor x <- seq(0, r, by= r / (size - 1)) * theta err <- try(RFsimulate(x, x, model=RPcirculant(model), n=0)) return(if (class(err) == "try-error") NA else r) } alphas <- seq(1.52, 2.0, 0.02) thetas <- seq(0.05, 3.5, 0.05) m <- matrix(NA, nrow=length(thetas), ncol=length(alphas)) for (it in 1:length(thetas)) { theta <- thetas[it] for (ia in 1:length(alphas)) { alpha <- alphas[ia] cat("alpha=", alpha, "theta=", theta,"\n") m[it, ia] <- stabletest(alpha=alpha, theta=theta) if (is.na(m[it, ia])) break } if (any(is.finite(m))) image(thetas, alphas, m, col=rainbow(100)) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.