Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

papers.jss14

Covariance models for multivariate and vector-valued fields


Description

Here, the code of the paper on ‘Analysis, simulation and prediction of multivariate random fields with package RandomFields’ is given.

Author(s)

References

Schlather, M., Malinowski, A., Menck, P.J., Oesting, M. and Strokorb, K. (2015) Analysis, simulation and prediction of multivariate random fields with package RandomFields. Journal of Statistical Software, 63 (8), 1-25, url = ‘http://www.jstatsoft.org/v63/i08/’

See Also

Examples

## Not run: 
               ###########################################
               ##  SECTION 4: UNCONDITIONAL SIMULATION  ##
               ###########################################

RFoptions(seed = 0, height = 4)
## seed=0:  *ANY* simulation will have the random seed 0; set
##          RFoptions(seed=NA) to make them all random again
## height : height of X11
## always_close_device=FALSE: the pictures are kept on the screen


## Fig. 1: linear model of coregionalization
M1 <- c(0.9, 0.6)
M2 <- c(sqrt(0.19), 0.8)
model <- RMmatrix(M = M1, RMwhittle(nu = 0.3)) + 
         RMmatrix(M = M2, RMwhittle(nu = 2))
x <- y <- seq(-10, 10,  0.2)
simu <- RFsimulate(model, x, y)
plot(simu)


## Fig. 2: Wackernagel's delay model
model <- RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(4, 4))
simu <- RFsimulate(model, x, y)
plot(simu, zlim = 'joint')


## Fig. 3: extended Wackernagel's delay model
model <- RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(0, 4)) + 
         RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(4, 0))
simu <- RFsimulate(model, x, y)
plot(simu, zlim = 'joint')
plot(model, dim = 2, xlim = c(-5, 5), main = "Covariance function", 
     cex = 1.5, col = "brown")


## Fig. 4: latent dimension model
## MARGIN.slices has the effect of choosing the third dimension
##               as latent dimension
## n.slices has the effect of choosing a bivariate model
model <- RMgencauchy(alpha = 1.5, beta = 3)
simu <- RFsimulate(model, x, y, z = c(0,1))
plot(simu, MARGIN.slices = 3, n.slices = 2)


## Fig. 5: Gneiting's bivariate Whittle-Matern model
model <- RMbiwm(nudiag = c(1, 2), nured = 1, rhored = 1, cdiag = c(1, 5), 
                s = c(1, 1, 2))
simu <- RFsimulate(model, x, y)
plot(simu)


## Fig. 6: anisotropic linear model of coregionalization
M1 <- c(0.9, 0.6)
M2 <- c(sqrt(0.19), 0.8)
A1 <- RMangle(angle = pi/4, diag = c(0.1, 0.5))
A2 <- RMangle(angle = 0, diag = c(0.1, 0.5))
model <- RMmatrix(M = M1, RMgengneiting(kappa = 0, mu = 2, Aniso = A1)) +
         RMmatrix(M = M2, RMgengneiting(kappa = 3, mu = 2, Aniso = A2))
simu <- RFsimulate(model, x, y)
plot(simu)


## Fig. 7: random vector field whose paths are curl free
## A 4-variate field is simulated, where the first component
## refers to the potential field, the second and third component
## to the curl free vector field and the forth component to the
## field of sinks and sources
model <- RMcurlfree(RMmatern(nu = 5), scale = 4)
simu <- RFsimulate(model, x, y)
plot(simu, select.variables = list(1, 2 : 3, 4))
plot(model, dim = 2, xlim = c(-3, 3), main = "", cex = 2.3, col="brown") 



## Fig. 8: Kolmogorov's model of turbulence
## See the physical literature for its derivation and details
x <- y <- seq(-2, 2, len = 20)
model <- RMkolmogorov()
simu <- RFsimulate(model, x, y, z = 1)
plot(simu, select.variables = list(1 : 2), col = c("red"))
plot(model, dim = 3, xlim = c(-3, 3), MARGIN = 1 : 2, cex = 2.3,
     fixed.MARGIN = 1.0, main = "", col = "brown")




               ###########################################
               ## SECTION 5: DATA ANALYSIS              ##
               ###########################################

## get the data     
data("weather")
PT <- weather[ , 1 : 2]  ## full data set takes more than 
##                                     half an hour to be analysed
## transformation of earth coordinates to Euclidean coordinates
Dist.mat <- as.vector(RFearth2dist(weather[ , 3 : 4]))
All <- TRUE
\dontshow{if(RFoptions()$internal$examples_reduced){warning("reduced data set")
All <- 1:10
PT <- weather[All , 1 : 2] 
Dist.mat <- as.vector(RFearth2dist(weather[All , 3 : 4]))
}}



#################################
## model definition            ##
#################################
## bivariate pure nugget effect:
nug <- RMmatrix(M = matrix(nc = 2, c(NA, 0, 0, NA)), RMnugget())
## parsimonious bivariate Matern model
pars.model <- nug + RMbiwm(nudiag = c(NA, NA), scale = NA, cdiag = c(NA, NA),
                           rhored = NA)
## whole bivariate Matern model
whole.model <- nug + RMbiwm(nudiag = c(NA, NA), nured = NA, s = rep(NA, 3),
                            cdiag = c(NA, NA), rhored = NA)



#################################
## model fitting and testing   ## 
#################################
## 'parsimonious model'
## fitting takes a while ( > 10 min)
pars <- RFfit(pars.model, distances = Dist.mat, dim = 3, data = PT)
print(pars)
print(pars, full=TRUE)
RFratiotest(pars)
#RFcrossvalidate(pars, x = weather[All , 3 : 4], data = PT, full = TRUE)

## 'whole model'
## fitting takes a while ( > 10 min)
whole <- RFfit(whole.model, distances = Dist.mat, dim = 3, data = PT)
print(whole, full=TRUE)
RFratiotest(whole)
#RFcrossvalidate(whole, x = weather[All , 3 : 4], data = PT, full = TRUE)

## compare parsimonious and whole
RFratiotest(nullmodel = pars, alternative = whole)


#################################
## kriging                     ##
#################################
## First, the coordinates are projected on a plane
a <- colMeans(weather[All , 3 : 4]) * pi / 180
P <- cbind(c(-sin(a[1]), cos(a[1]), 0),
           c(-cos(a[1]) * sin(a[2]), -sin(a[1]) * sin(a[2]), cos(a[2])),
           c(cos(a[1]) * cos(a[2]), sin(a[1]) * cos(a[2]), sin(a[2])))
x <- RFearth2cartesian(weather[All , 3 : 4])
plane <- (t(x) %*%P)[ , 1 : 2]

## here, kriging is performed on a rectangular that covers
## the projected points above. The rectangular is approximated
## by a grid of length 200 in each direction.
n <- 200 
r <- apply(plane, 2, range)
dta <- cbind(plane, weather[All , 1 : 2])
z <- RFinterpolate(pars, data = dta, dim = 2,
                   x = seq(r[1, 1], r[2, 1], length = n),
                   y = seq(r[1, 2], r[2, 2], length = n),
                   varunits = c("Pa", "K"), spConform = TRUE)
plot(z)

## End(Not run)

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.