Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

soil

Soil data of North Bavaria, Germany


Description

Soil physical and chemical data collected on a field in the Weissenstaedter Becken, Germany

Usage

data(soil)

Format

This data frame contains the following columns:

x.coord

x coordinates given in cm

y.coord

y coordinates given in cm

nr

number of the samples, which were taken in this order

moisture

moisture content [Kg/Kg * 100%]

NO3.N

nitrate nitrogen [mg/Kg]

Total.N

total nitrogen [mg/Kg]

NH4.N

ammonium nitrogen [mg/Kg]

DOC

dissolved organic carbon [mg/Kg]

N20N

nitrous oxide [mg/Kg dried substance]

Details

For technical reasons some of the data were obtained as differences of two measurements (which are not available anymore). Therefore, some of the data have negative values.

Author(s)

Source

The data were collected by Wolfgang Falk, Soil Physics Group, University of Bayreuth, Germany.

References

Falk, W. (2000) Kleinskalige raeumliche Variabilitaet von Lachgas und bodenchemischen Parameters [Small Scale Spatial Variability of Nitrous Oxide and Pedo-Chemical Parameters], Master thesis, University of Bayreuth, Germany.

Examples

RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

################################################################
## ##
## a geostatistical analysis that demonstrates ##
## features of the package 'RandomFields' ##
## ##
################################################################


data(soil)
str(soil)
soil <- RFspatialPointsDataFrame(
 coords = soil[ , c("x.coord", "y.coord")],
 data = soil[ , c("moisture", "NO3.N", "Total.N", "NH4.N", "DOC", "N20N")],
 RFparams=list(vdim=6, n=1)
)
dta <- soil["moisture"]


## plot the data first
colour <- rainbow(100)
plot(dta, col=colour)


## fit by eye
gui.model <- RFgui(dta) 
 

## fit by ML
model <- ~1 + RMwhittle(scale=NA, var=NA, nu=NA) + RMnugget(var=NA)
(fit <- RFfit(model, data=dta))
plot(fit, method=c("ml", "plain", "sqrt.nr", "sd.inv"),
     model = gui.model, col=1:8)

## Kriging ...
x <- seq(min(dta@coords[, 1]), max(dta@coords[, 1]), l=121)
k <- RFinterpolate(fit, x=x, y=x, data=dta)
plot(x=k, col=colour)
plot(x=k, y=dta, col=colour)

## what is the probability that at no point of the
## grid given by x and y the moisture is greater than 24 percent?

cs <- RFsimulate(model=fit@ml, x=x, y=x, data=dta, n=50)
plot(cs, col=colour)
plot(cs, y=dta, col=colour)
Print(mean(apply(as.array(cs) <= 24, 3, all))) ## about 40 percent ...

RandomFields

Simulation and Analysis of Random Fields

v3.3.10
GPL (>= 3)
Authors
Martin Schlather [aut, cre], Alexander Malinowski [aut], Marco Oesting [aut], Daphne Boecker [aut], Kirstin Strokorb [aut], Sebastian Engelke [aut], Johannes Martini [aut], Felix Ballani [aut], Olga Moreva [aut], Jonas Auel[ctr], Peter Menck [ctr], Sebastian Gross [ctr], Ulrike Ober [ctb], Paulo Ribeiro [ctb], Brian D. Ripley [ctb], Richard Singleton [ctb], Ben Pfaff [ctb], R Core Team [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.