Special Mathematical Functions (MPFR)
Special Mathematical Functions, supported by the MPFR Library.
zeta(x) Ei(x) Li2(x) erf(x) erfc(x)
zeta(x)
computes Riemann's Zeta function
zeta(x) important in analytical number theory and
related fields. The traditional definition is
Zeta(x) = sum[n=1..Inf; 1/(n^x)].
Ei(x)
computes the exponential integral,
Integral(-Inf,x; e^t/t dt).
Li2(x)
computes the dilogarithm,
Integral(0,x; -log(1-t)/t dt).
A vector of the same length as x
, of class mpfr
.
Note the (integer order, non modified) Bessel functions j_0(),
y_n(), etc, named j0, yn
etc, and Airy
function Ai() in Bessel_mpfr.
curve(Ei, 0, 5, n=2001) ## As we now require (mpfrVersion() >= "2.4.0"): curve(Li2, 0, 5, n=2001) curve(Li2, -2, 13, n=2000); abline(h=0,v=0, lty=3) curve(Li2, -200,400, n=2000); abline(h=0,v=0, lty=3) curve(erf, -3,3, col = "red", ylim = c(-1,2)) curve(erfc, add = TRUE, col = "blue") abline(h=0, v=0, lty=3) legend(-3,1, c("erf(x)", "erfc(x)"), col = c("red","blue"), lty=1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.