Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RobCor.plot

Compares the Robust Estimation with the Classical


Description

This function compares a robust covariance (correlation) estimation (MCD is used) with the classical approach. A plot with the two ellipses will be produced and the correlation coefficients are quoted.

Usage

RobCor.plot(x, y, quan = 1/2, alpha = 0.025, colC = 1, colR = 1, ltyC = 2,
ltyR = 1, ...)

Arguments

x, y

two data vectors where the correlation should be computed

quan

fraction of tolerated outliers (at most 0.5)

alpha

quantile of chisquare distribution for outlier cutoff

colC, colR

colour for both ellipses

ltyC, ltyR

line type for both ellipses

...

other graphical parameters

Details

The covariance matrix is estimated in a robust (MCD) and non robust way and then both ellipses are plotted. The radi is calculated from the singular value decomposition and a breakpoint (specified quantile) for outlier cutoff.

Value

cor.cla

correlation of the classical estimation

cor.rob

correlation of the robust estimation

Author(s)

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
Be=chorizon[,"Be"]
Sr=chorizon[,"Sr"]
RobCor.plot(log10(Be),log10(Sr),xlab="Be in C-horizon [mg/kg]",
ylab="Sr in C-horizon [mg/kg]",cex.lab=1.2, pch=3, cex=0.7,
xaxt="n", yaxt="n",colC=1,colR=1,ltyC=2,ltyR=1)

StatDA

Statistical Analysis for Environmental Data

v1.7.4
GPL (>= 3)
Authors
Peter Filzmoser
Initial release
2020-03-10

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.