Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rg.robmva

Robust Multivariate Analysis


Description

Procedure for multivariate analysis using the minimum volume ellipsoid (MVE), minimum covariance determinant (MCD) or a supplied set of 0-1 weights.

Usage

rg.robmva(x, proc = "mcd", wts = NULL, main = deparse(substitute(x)))

Arguments

x

data

proc

procedure for the estimation (MVE or MCD)

wts

if proc=NULL, the supplied weights for the calculation

main

input for the list

Details

cov.mcd is limited to a maximum of 50 variables. Both of these procedures lead to a vector of 0-1 weights and mcd is the default. A set of weights can be generated by using Graphical Adaptive Interactive Trimming (GAIT) procedure available though rg.md.gait(). Using 0-1 weights the parameters of the background distribution are estimated by cov.wt(). A robust estimation of the Mahalanobis distances is made for the total data set but is only undertaken if x is non-singular (lowest eigenvalue is >10e-4).

Value

n

number of rows

p

number of columns

wts

the weights for the covariance matrix

mean

the mean of the data

cov

the covariance

sd

the standard deviation

r

correlation matrix

eigenvalues

eigenvalues of the SVD

econtrib

proportion of eigenvalues in %

eigenvectors

eigenvectors of the SVD

rload

loadings matrix

rcr

standardised loadings matrix

vcontrib

scores variance

pvcontrib

proportion of scores variance in %

cpvcontrib

cummulative proportion of scores variance

md

Mahalanbois distance

ppm

probability for outliegness using F-distribution

epm

probability for outliegness using Chisquared-distribution

Author(s)

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
  "Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]
subvar=c("Ag","B","Bi","Mg","Mn","Na","Pb","Rb","S","Sb","Tl")
set.seed(100)

rg.robmva(as.matrix(x[v==1,subvar]))

StatDA

Statistical Analysis for Environmental Data

v1.7.4
GPL (>= 3)
Authors
Peter Filzmoser
Initial release
2020-03-10

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.