Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

create.SL.xgboost

Factory for XGBoost SL wrappers


Description

Create multiple configurations of XGBoost learners based on the desired combinations of hyperparameters.

Usage

create.SL.xgboost(tune = list(ntrees = c(1000), max_depth = c(4), shrinkage =
  c(0.1), minobspernode = c(10)), detailed_names = F, env = .GlobalEnv,
  name_prefix = "SL.xgb")

Arguments

tune

List of hyperparameter settings to test. If specified, each hyperparameter will need to be defined.

detailed_names

Set to T to have the function names include the parameter configurations.

env

Environment in which to create the SL.xgboost functions. Defaults to the global environment.

name_prefix

The prefix string for the name of each function that is generated.

Examples

# Create a new environment to store the learner functions.
# This keeps the global environment organized.
sl_env = new.env()
# Create 2 * 2 * 1 * 3 = 12 combinations of hyperparameters.
tune = list(ntrees = c(100, 500), max_depth = c(1, 2), minobspernode = 10,
            shrinkage = c(0.1, 0.01, 0.001))
# Generate a separate learner for each combination.
xgb_grid = create.SL.xgboost(tune = tune, env = sl_env)
# Review the function configurations.
xgb_grid
# Attach the environment so that the custom learner functions can be accessed.
attach(sl_env)
## Not run: 
sl = SuperLearner(Y = Y, X = X, SL.library = xgb_grid$names)

## End(Not run)
detach(sl_env)

SuperLearner

Super Learner Prediction

v2.0-28
GPL-3
Authors
Eric Polley [aut, cre], Erin LeDell [aut], Chris Kennedy [aut], Sam Lendle [ctb], Mark van der Laan [aut, ths]
Initial release
2021-05-04

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.