Linear Approximation of a Confirmatory Factor Analysis
This function approximates a fitted item response model by a linear confirmatory factor analysis. I.e., given item response functions, the expectation E(X_i | θ_1, …, θ_D) is linearly approximated by a_{i1} θ _1 + … + a_{iD} θ_D. See Vermunt and Magidson (2005) for details.
IRT.linearCFA( object, group=1) ## S3 method for class 'IRT.linearCFA' summary(object, ...)
object |
Fitted item response model for which the |
group |
Group identifier which defines the selected group. |
... |
Further arguments to be passed. |
A list with following entries
loadings |
Data frame with factor loadings. |
stand.loadings |
Data frame with standardized factor loadings. |
M.trait |
Mean of factors |
SD.trait |
Standard deviations of factors |
Vermunt, J. K., & Magidson, J. (2005). Factor Analysis with categorical indicators: A comparison between traditional and latent class approaches. In A. Van der Ark, M.A. Croon & K. Sijtsma (Eds.), New Developments in Categorical Data Analysis for the Social and Behavioral Sciences (pp. 41-62). Mahwah: Erlbaum
See tam.fa
for confirmatory factor analysis in TAM.
## Not run: library(lavaan) ############################################################################# # EXAMPLE 1: Two-dimensional confirmatory factor analysis data.Students ############################################################################# data(data.Students, package="CDM") # select variables vars <- scan(nlines=1, what="character") sc1 sc2 sc3 sc4 mj1 mj2 mj3 mj4 dat <- data.Students[, vars] # define Q-matrix Q <- matrix( 0, nrow=8, ncol=2 ) Q[1:4,1] <- Q[5:8,2] <- 1 #*** Model 1: Two-dimensional 2PL model mod1 <- TAM::tam.mml.2pl( dat, Q=Q, control=list( nodes=seq(-4,4,len=12) ) ) summary(mod1) # linear approximation CFA cfa1 <- TAM::IRT.linearCFA(mod1) summary(cfa1) # linear CFA in lavaan package lavmodel <- " sc=~ sc1+sc2+sc3+sc4 mj=~ mj1+mj2+mj3+mj4 sc1 ~ 1 sc ~~ mj " mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE) summary(mod1b, standardized=TRUE, fit.measures=TRUE ) ############################################################################# # EXAMPLE 2: Unidimensional confirmatory factor analysis data.Students ############################################################################# data(data.Students, package="CDM") # select variables vars <- scan(nlines=1, what="character") sc1 sc2 sc3 sc4 dat <- data.Students[, vars] #*** Model 1: 2PL model mod1 <- TAM::tam.mml.2pl( dat ) summary(mod1) # linear approximation CFA cfa1 <- TAM::IRT.linearCFA(mod1) summary(cfa1) # linear CFA lavmodel <- " sc=~ sc1+sc2+sc3+sc4 " mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE) summary(mod1b, standardized=TRUE, fit.measures=TRUE ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.