Converts a θ Score into a True Score τ ( θ)
Converts a θ score into an unweighted true score
τ ( θ)=∑_i ∑_h h P_i ( θ ) .
In addition, a weighted true score
τ ( θ)=∑_i ∑_h q_{ih} P_i ( θ )
can also be computed by specifying item-category weights
q_{ih} in the matrix Q
.
IRT.truescore(object, iIndex=NULL, theta=NULL, Q=NULL)
object |
Object for which the
|
iIndex |
Optional vector with item indices |
theta |
Optional vector with θ values |
Q |
Optional weighting matrix |
Data frame containing θ values and corresponding true scores τ( θ ) .
See also sirt::truescore.irt
for a conversion function for generalized partial credit models.
############################################################################# # EXAMPLE 1: True score conversion for a test with polytomous items ############################################################################# data(data.Students, package="CDM") dat <- data.Students[, paste0("mj",1:4) ] # fit partial credit model mod1 <- TAM::tam.mml( dat,control=list(maxiter=20) ) summary(mod1) # true score conversion tmod1 <- TAM::IRT.truescore( mod1 ) round( tmod1, 4 ) # true score conversion with user-defined theta grid tmod1b <- TAM::IRT.truescore( mod1, theta=seq( -8,8, len=33 ) ) # plot results plot( tmod1$theta, tmod1$truescore, type="l", xlab=expression(theta), ylab=expression(tau( theta ) ) ) points( tmod1b$theta, tmod1b$truescore, pch=16, col="brown" ) ## Not run: ############################################################################# # EXAMPLE 2: True scores with different category weightings ############################################################################# data(data.timssAusTwn.scored) dat <- data.timssAusTwn.scored # extract item response data dat <- dat[, grep("M03", colnames(dat) ) ] # select items with do have maximum score of 2 (polytomous items) ind <- which( apply( dat, 2, max, na.rm=TRUE )==2 ) I <- ncol(dat) # define Q-matrix with scoring variant Q <- matrix( 1, nrow=I, ncol=1 ) Q[ ind, 1 ] <- .5 # score of 0.5 for polyomous items # estimate model mod1 <- TAM::tam.mml( dat, Q=Q, irtmodel="PCM2", control=list( nodes=seq(-10,10,len=61) ) ) summary(mod1) # true score with scoring (0,1,2) which is the default of the function tmod1 <- TAM::IRT.truescore(mod1) # true score with user specified weighting matrix Q <- mod1$B[,,1] tmod2 <- TAM::IRT.truescore(mod1, Q=Q) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.