Individual Likelihood for Confirmatory Factor Analysis
This function computes the individual likelihood evaluated
at a theta
grid for confirmatory factor analysis
under the normality assumption of residuals. Either
the item parameters (item loadings L
, item
intercepts nu
and residual covariances psi
)
or a fitted cfa
object from the lavaan
package can be provided. The individual likelihood
can be used for drawing plausible values.
IRTLikelihood.cfa(data, cfaobj=NULL, theta=NULL, L=NULL, nu=NULL, psi=NULL, snodes=NULL, snodes.adj=2, version=1)
data |
Dataset with item responses |
cfaobj |
Fitted |
theta |
Optional matrix containing the |
L |
Matrix of item loadings (if |
nu |
Vector of item intercepts (if |
psi |
Matrix with residual covariances
(if |
snodes |
Number of |
snodes.adj |
Adjustment factor for quasi monte carlo nodes for more than two latent variables. |
version |
Function version. |
Individual likelihood evaluated at theta
## Not run: ############################################################################# # EXAMPLE 1: Two-dimensional CFA data.Students ############################################################################# library(lavaan) library(CDM) data(data.Students, package="CDM") dat <- data.Students dat2 <- dat[, c(paste0("mj",1:4), paste0("sc",1:4)) ] # lavaan model with DO operator lavmodel <- " DO(1,4,1) mj=~ mj% sc=~ sc% DOEND mj ~~ sc mj ~~ 1*mj sc ~~ 1*sc " lavmodel <- TAM::lavaanify.IRT( lavmodel, data=dat2 )$lavaan.syntax cat(lavmodel) mod4 <- lavaan::cfa( lavmodel, data=dat2, std.lv=TRUE ) summary(mod4, standardized=TRUE, rsquare=TRUE ) # extract item parameters res4 <- TAM::cfa.extract.itempars( mod4 ) # create theta grid theta0 <- seq( -6, 6, len=15) theta <- expand.grid( theta0, theta0 ) L <- res4$L nu <- res4$nu psi <- res4$psi data <- dat2 # evaluate likelihood using item parameters like2 <- TAM::IRTLikelihood.cfa( data=dat2, theta=theta, L=L, nu=nu, psi=psi ) # The likelihood can also be obtained by direct evaluation # of the fitted cfa object "mod4" like4 <- TAM::IRTLikelihood.cfa( data=dat2, cfaobj=mod4 ) attr( like4, "theta") # the theta grid is automatically created if theta is not # supplied as an argument ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.