Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

TAM-package

Test Analysis Modules


Description

Includes marginal maximum likelihood estimation and joint maximum likelihood estimation for unidimensional and multidimensional item response models. The package functionality covers the Rasch model, 2PL model, 3PL model, generalized partial credit model, multi-faceted Rasch model, nominal item response model, structured latent class model, mixture distribution IRT models, and located latent class models. Latent regression models and plausible value imputation are also supported. For details see Adams, Wilson and Wang, 1997 <doi:10.1177/0146621697211001>, Adams, Wilson and Wu, 1997 <doi:10.3102/10769986022001047>, Formann, 1982 <doi:10.1002/bimj.4710240209>, Formann, 1992 <doi:10.1080/01621459.1992.10475229>.

Details

See http://www.edmeasurementsurveys.com/TAM/Tutorials/ for tutorials of the TAM package.

Author(s)

Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>), Thomas Kiefer [aut], Margaret Wu [aut]

Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>

References

Adams, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1-23. doi: 10.1177/0146621697211001

Adams, R. J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An approach to errors in variables regression. Journal of Educational and Behavioral Statistics, 22(1), 47-76. doi: 10.3102/10769986022001047

Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model. A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.): Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 55-76). New York: Springer. doi: 10.1007/978-0-387-49839-3_4

Formann, A. K. (1982). Linear logistic latent class analysis. Biometrical Journal, 24(2), 171-190. doi: 10.1002/bimj.4710240209

Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87(418), 476-486. doi: 10.1080/01621459.1992.10475229


TAM

Test Analysis Modules

v3.6-45
GPL (>= 2)
Authors
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>), Thomas Kiefer [aut], Margaret Wu [aut]
Initial release
2021-04-22 14:35:52

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.