Test Analysis Modules
Includes marginal maximum likelihood estimation and joint maximum likelihood estimation for unidimensional and multidimensional item response models. The package functionality covers the Rasch model, 2PL model, 3PL model, generalized partial credit model, multi-faceted Rasch model, nominal item response model, structured latent class model, mixture distribution IRT models, and located latent class models. Latent regression models and plausible value imputation are also supported. For details see Adams, Wilson and Wang, 1997 <doi:10.1177/0146621697211001>, Adams, Wilson and Wu, 1997 <doi:10.3102/10769986022001047>, Formann, 1982 <doi:10.1002/bimj.4710240209>, Formann, 1992 <doi:10.1080/01621459.1992.10475229>.
See http://www.edmeasurementsurveys.com/TAM/Tutorials/ for tutorials of the TAM package.
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>), Thomas Kiefer [aut], Margaret Wu [aut]
Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
Adams, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1-23. doi: 10.1177/0146621697211001
Adams, R. J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An approach to errors in variables regression. Journal of Educational and Behavioral Statistics, 22(1), 47-76. doi: 10.3102/10769986022001047
Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model. A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.): Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 55-76). New York: Springer. doi: 10.1007/978-0-387-49839-3_4
Formann, A. K. (1982). Linear logistic latent class analysis. Biometrical Journal, 24(2), 171-190. doi: 10.1002/bimj.4710240209
Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87(418), 476-486. doi: 10.1080/01621459.1992.10475229
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.