Dataset from Janssen and Geiser (2010)
Dataset used in Janssen and Geiser (2010).
data(data.janssen) data(data.janssen2)
data.janssen
is a data frame with 346 observations on the 8
items of the following format
'data.frame': 346 obs. of 8 variables:
$ PIS1 : num 1 1 1 0 0 1 1 1 0 1 ...
$ PIS3 : num 0 1 1 1 1 1 0 1 1 1 ...
$ PIS4 : num 1 1 1 1 1 1 1 1 1 1 ...
$ PIS5 : num 0 1 1 0 1 1 1 1 1 0 ...
$ SCR6 : num 1 1 1 1 1 1 1 1 1 0 ...
$ SCR9 : num 1 1 1 1 0 0 0 1 0 0 ...
$ SCR10: num 0 0 0 0 0 0 0 0 0 0 ...
$ SCR17: num 0 0 0 0 0 1 0 0 0 0 ...
data.janssen2
contains 20 IST items:
'data.frame': 346 obs. of 20 variables:
$ IST01 : num 1 1 1 0 0 1 1 1 0 1 ...
$ IST02 : num 1 0 1 0 1 1 1 1 0 1 ...
$ IST03 : num 0 1 1 1 1 1 0 1 1 1 ...
[...]
$ IST020: num 0 0 0 1 1 0 0 0 0 0 ...
Janssen, A. B., & Geiser, C. (2010). On the relationship between solution strategies in two mental rotation tasks. Learning and Individual Differences, 20(5), 473-478. doi: 10.1016/j.lindif.2010.03.002
## Not run: ############################################################################# # EXAMPLE 1: CCT data, Janssen and Geiser (2010, LID) # Latent class analysis based on data.janssen ############################################################################# data(data.janssen) dat <- data.janssen colnames(dat) ## [1] "PIS1" "PIS3" "PIS4" "PIS5" "SCR6" "SCR9" "SCR10" "SCR17" #********************************************************************* #*** Model 1: Latent class analysis with two classes tammodel <- " ANALYSIS: TYPE=LCA; NCLASSES(2); NSTARTS(10,20); LAVAAN MODEL: # missing item numbers (e.g. PIS2) are ignored in the model F=~ PIS1__PIS5 + SCR6__SCR17 " mod3 <- TAM::tamaan( tammodel, resp=dat ) summary(mod3) # extract item response functions imod2 <- IRT.irfprob(mod3)[,2,] # plot class specific probabilities ncl <- 2 matplot( imod2, type="o", pch=1:ncl, xlab="Item", ylab="Probability" ) legend( 1, .3, paste0("Class",1:ncl), lty=1:ncl, col=1:ncl, pch=1:ncl ) #********************************************************************* #*** Model 2: Latent class analysis with three classes tammodel <- " ANALYSIS: TYPE=LCA; NCLASSES(3); NSTARTS(10,20); LAVAAN MODEL: F=~ PIS1__PIS5 + SCR6__SCR17 " mod3 <- TAM::tamaan( tammodel, resp=dat ) summary(mod3) # extract item response functions imod2 <- IRT.irfprob(mod3)[,2,] # plot class specific probabilities ncl <- 3 matplot( imod2, type="o", pch=1:ncl, xlab="Item", ylab="Probability" ) legend( 1, .3, paste0("Class",1:ncl), lty=1:ncl, col=1:ncl, pch=1:ncl ) # compare models AIC(mod1); AIC(mod2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.