Dataset TIMSS 2011 of Australian and Taiwanese Students
Mathematics items of TIMSS 2011 of 1773 Australian and
Taiwanese students. The dataset data.timssAusTwn
contains raw
responses while data.timssAusTwn.scored
contains scored item
responses.
data(data.timssAusTwn) data(data.timssAusTwn.scored)
A data frame with 1773 observations on the following 14 variables.
M032166
a mathematics item
M032721
a mathematics item
M032757
a mathematics item
M032760A
a mathematics item
M032760B
a mathematics item
M032760C
a mathematics item
M032761
a mathematics item
M032692
a mathematics item
M032626
a mathematics item
M032595
a mathematics item
M032673
a mathematics item
IDCNTRY
Country identifier
ITSEX
Gender
IDBOOK
Booklet identifier
data(data.timssAusTwn) raw_resp <- data.timssAusTwn #Recode data resp <- raw_resp[,1:11] #Column 12 is country code. Column 13 is gender code. Column 14 is Book ID. all.na <- rowMeans( is.na(resp) )==1 #Find records where all responses are missing. resp <- resp[!all.na,] #Delete records with all missing responses resp[resp==20 | resp==21] <- 2 #TIMSS double-digit coding: "20" or "21" is a score of 2 resp[resp==10 | resp==11] <- 1 #TIMSS double-digit coding: "10" or "11" is a score of 1 resp[resp==70 | resp==79] <- 0 #TIMSS double-digit coding: "70" or "79" is a score of 0 resp[resp==99] <- 0 #"99" is omitted responses. Score it as wrong here. resp[resp==96 | resp==6] <- NA #"96" and "6" are not-reached items. Treat these as missing. #Score multiple-choice items #"resp" contains raw responses for MC items. Scored <- resp Scored[,9] <- (resp[,9]==4)*1 #Key for item 9 is D. Scored[,c(1,2)] <- (resp[,c(1,2)]==2)*1 #Key for items 1 and 2 is B. Scored[,c(10,11)] <- (resp[,c(10,11)]==3)*1 #Key for items 10 and 11 is C. #Run IRT analysis for partial credit model (MML estimation) mod1 <- TAM::tam.mml(Scored) #Item parameters mod1$xsi #Thurstonian thresholds tthresh <- TAM::tam.threshold(mod1) tthresh ## Not run: #Plot Thurstonian thresholds windows (width=8, height=7) par(ps=9) dotchart(t(tthresh), pch=19) # plot expected response curves plot( mod1, ask=TRUE) #Re-run IRT analysis in JML mod1.2 <- TAM::tam.jml(Scored) stats::var(mod1.2$WLE) #Re-run the model with "not-reached" coded as incorrect. Scored2 <- Scored Scored2[is.na(Scored2)] <- 0 #Prepare anchor parameter values nparam <- length(mod1$xsi$xsi) xsi <- mod1$xsi$xsi anchor <- matrix(c(seq(1,nparam),xsi), ncol=2) #Run IRT with item parameters anchored on mod1 values mod2 <- TAM::tam.mml(Scored2, xsi.fixed=anchor) #WLE ability estimates ability <- TAM::tam.wle(mod2) ability #CTT statistics ctt <- TAM::tam.ctt(resp, ability$theta) write.csv(ctt,"TIMSS_CTT.csv") #plot histograms of ability and item parameters in the same graph windows(width=4.45, height=4.45, pointsize=12) layout(matrix(c(1,1,2),3,byrow=TRUE)) layout.show(2) hist(ability$theta,xlim=c(-3,3),breaks=20) hist(tthresh,xlim=c(-3,3),breaks=20) #Extension #Score equivalence table dummy <- matrix(0,nrow=16,ncol=11) dummy[lower.tri(dummy)] <- 1 dummy[12:16,c(3,4,7,8)][lower.tri(dummy[12:16,c(3,4,7,8)])]<-2 mod3 <- TAM::tam.mml(dummy, xsi.fixed=anchor) wle3 <- TAM::tam.wle(mod3) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.