Generation of Design Matrices
Generate design matrices, and display them at console.
designMatrices(modeltype=c("PCM", "RSM"), maxKi=NULL, resp=resp, ndim=1, A=NULL, B=NULL, Q=NULL, R=NULL, constraint="cases",...) print.designMatrices(X, ...) designMatrices.mfr(resp, formulaA=~ item + item:step, facets=NULL, constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL, progress=FALSE) designMatrices.mfr2(resp, formulaA=~ item + item:step, facets=NULL, constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL, progress=FALSE) .A.matrix(resp, formulaA=~ item + item*step, facets=NULL, constraint=c("cases", "items"), progress=FALSE, maxKi=NULL) rownames.design(X) .A.PCM2( resp, Kitem=NULL, constraint="cases", Q=NULL) # generates ConQuest parametrization of partial credit model .A.PCM3( resp, Kitem=NULL ) # parametrization for A matrix in the dispersion model
modeltype |
Type of item response model. Until now, the
partial credit model ( |
maxKi |
A vector containing the maximum score per item |
resp |
Data frame of item responses |
ndim |
Number of dimensions |
A |
The design matrix for linking item category parameters to generalized item parameters ξ. |
B |
The scoring matrix of item categories on θ dimensions. |
Q |
A loading matrix of items on dimensions with number of rows equal the number of items and the number of columns equals the number of dimensions in the item response model. |
R |
This argument is not used |
X |
Object generated by |
formulaA |
An R formula object for generating the |
facets |
A data frame with observed facets. The number of rows must be equal
to the number of rows in |
constraint |
Constraint in estimation: |
Kitem |
Maximum number of categories per item |
progress |
Display progress for creation of design matrices |
... |
Further arguments |
The function .A.PCM2
generates the Conquest parametrization
of the partial credit model.
The function .A.PCM3
generates the parametrization for the A
design matrix in the dispersion model for ordered data (Andrich, 1982).
The function designMatrices.mfr2
handles multi-faceted design for
items with differing number of response options.
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47(1), 105-113. doi: 10.1007/BF02293856
See data.sim.mfr
for some examples for creating design matrices.
########################################################### # different parametrizations for ordered data data( data.gpcm ) resp <- data.gpcm # parametrization for partial credit model A1 <- TAM::designMatrices( resp=resp )$A # item difficulty and threshold parametrization A2 <- TAM::.A.PCM2( resp ) # dispersion model of Andrich (1982) A3 <- TAM::.A.PCM3( resp ) # rating scale model A4 <- TAM::designMatrices( resp=resp, modeltype="RSM" )$A
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.