Standard Error Estimation
Standard error computation for objects of the classes tam
and tam.mml
.
tam.se(tamobj, item_pars=TRUE, ...) tam_mml_se_quick(tamobj, numdiff.parm=0.001, item_pars=TRUE ) tam_latreg_se_quick(tamobj, numdiff.parm=0.001 )
tamobj |
An object generated by |
item_pars |
Logical indicating whether standard errors should also be computed for item parameters |
numdiff.parm |
Step width parameter for numerical differentiation |
... |
Further arguments to be passed |
Covariances between parameters estimates are ignored in this standard error calculation. The standard error is obtained by numerical differentiation.
A list with following entries:
xsi |
Data frame with ξ parameters ( |
beta |
Data frame with β regression parameters and their standard error estimates |
B |
Data frame with loading parameters and their corresponding standard errors |
Standard error estimation for variances and covariances is not yet
implemented.
Standard error estimation for loading parameters in case of
irtmodel='GPCM.design'
is highly experimental.
############################################################################# # EXAMPLE 1: 1PL model, data.sim.rasch ############################################################################# data(data.sim.rasch) # estimate Rasch model mod1 <- TAM::tam.mml(resp=data.sim.rasch[1:500,1:10]) # standard error estimation se1 <- TAM::tam.se( mod1 ) # proportion of standard errors estimated by 'tam.se' and 'tam.mml' prop1 <- se1$xsi$se / mod1$xsi$se ## > summary( prop1 ) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.030 1.034 1.035 1.036 1.039 1.042 ##=> standard errors estimated by tam.se are a bit larger ## Not run: ############################################################################# # EXAMPLE 2: Standard errors differential item functioning ############################################################################# data(data.ex08) formulaA <- ~ item*female resp <- data.ex08[["resp"]] facets <- as.data.frame( data.ex08[["facets"]] ) # investigate DIF mod <- TAM::tam.mml.mfr( resp=resp, facets=facets, formulaA=formulaA ) summary(mod) # estimate standard errors semod <- TAM::tam.se(mod) prop1 <- semod$xsi$se / mod$xsi$se summary(prop1) # plot differences in standard errors plot( mod$xsi$se, semod$xsi$se, pch=16, xlim=c(0,.15), ylim=c(0,.15), xlab="Standard error 'tam.mml'", ylab="Standard error 'tam.se'" ) lines( c(-6,6), c(-6,6), col="gray") round( cbind( mod$xsi, semod$xsi[,-1] ), 3 ) ## xsi se.xsi N est se ## I0001 -1.956 0.092 500 -1.956 0.095 ## I0002 -1.669 0.085 500 -1.669 0.088 ## [...] ## I0010 2.515 0.108 500 2.515 0.110 ## female1 -0.091 0.025 500 -0.091 0.041 ## I0001:female1 -0.051 0.070 500 -0.051 0.071 ## I0002:female1 0.085 0.067 500 0.085 0.068 ## [...] ## I0009:female1 -0.019 0.068 500 -0.019 0.068 ## #=> The largest discrepancy in standard errors is observed for the # main female effect (.041 in 'tam.se' instead of .025 in 'tam.mml') ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.