Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

tam.se

Standard Error Estimation


Description

Standard error computation for objects of the classes tam and tam.mml.

Usage

tam.se(tamobj, item_pars=TRUE, ...)

tam_mml_se_quick(tamobj, numdiff.parm=0.001, item_pars=TRUE )

tam_latreg_se_quick(tamobj, numdiff.parm=0.001 )

Arguments

tamobj

An object generated by tam.mml

item_pars

Logical indicating whether standard errors should also be computed for item parameters

numdiff.parm

Step width parameter for numerical differentiation

...

Further arguments to be passed

Details

Covariances between parameters estimates are ignored in this standard error calculation. The standard error is obtained by numerical differentiation.

Value

A list with following entries:

xsi

Data frame with ξ parameters (est) and their corresponding standard errors (se)

beta

Data frame with β regression parameters and their standard error estimates

B

Data frame with loading parameters and their corresponding standard errors

Note

Standard error estimation for variances and covariances is not yet implemented. Standard error estimation for loading parameters in case of irtmodel='GPCM.design' is highly experimental.

Examples

#############################################################################
# EXAMPLE 1: 1PL model, data.sim.rasch
#############################################################################

data(data.sim.rasch)
# estimate Rasch model
mod1 <- TAM::tam.mml(resp=data.sim.rasch[1:500,1:10])
# standard error estimation
se1 <- TAM::tam.se( mod1 )
# proportion of standard errors estimated by 'tam.se' and 'tam.mml'
prop1 <- se1$xsi$se / mod1$xsi$se
##   > summary( prop1 )
##      Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
##     1.030   1.034   1.035   1.036   1.039   1.042
##=> standard errors estimated by tam.se are a bit larger

## Not run: 
#############################################################################
# EXAMPLE 2: Standard errors differential item functioning
#############################################################################
data(data.ex08)

formulaA <- ~ item*female
resp <- data.ex08[["resp"]]
facets <- as.data.frame( data.ex08[["facets"]] )
# investigate DIF
mod <- TAM::tam.mml.mfr( resp=resp, facets=facets, formulaA=formulaA )
summary(mod)
# estimate standard errors
semod <- TAM::tam.se(mod)
prop1 <- semod$xsi$se / mod$xsi$se
summary(prop1)
# plot differences in standard errors
plot( mod$xsi$se, semod$xsi$se, pch=16, xlim=c(0,.15), ylim=c(0,.15),
    xlab="Standard error 'tam.mml'", ylab="Standard error 'tam.se'" )
lines( c(-6,6), c(-6,6), col="gray")

round( cbind( mod$xsi, semod$xsi[,-1] ), 3 )
  ##                    xsi se.xsi   N    est    se
  ##   I0001         -1.956  0.092 500 -1.956 0.095
  ##   I0002         -1.669  0.085 500 -1.669 0.088
  ##   [...]
  ##   I0010          2.515  0.108 500  2.515 0.110
  ##   female1       -0.091  0.025 500 -0.091 0.041
  ##   I0001:female1 -0.051  0.070 500 -0.051 0.071
  ##   I0002:female1  0.085  0.067 500  0.085 0.068
  ##   [...]
  ##   I0009:female1 -0.019  0.068 500 -0.019 0.068
  ##
#=> The largest discrepancy in standard errors is observed for the
#    main female effect (.041 in 'tam.se' instead of .025 in 'tam.mml')

## End(Not run)

TAM

Test Analysis Modules

v3.6-45
GPL (>= 2)
Authors
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>), Thomas Kiefer [aut], Margaret Wu [aut]
Initial release
2021-04-22 14:35:52

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.