Calculation of Thurstonian Thresholds
This function estimates Thurstonian thresholds for item category parameters of (generalized) partial credit models (see Details).
tam.threshold(tamobj, prob.lvl=0.5)
tamobj |
Object of class |
prob.lvl |
A numeric specifying the probability level of the threshold.
The default is |
This function only works appropriately for unidimensional models or between item multidimensional models.
A data frame with Thurstonian thresholds. Rows correspond to items and columns to item steps.
See the WrightMap package and Example 3 for creating Wright maps
with fitted models in TAM, see
wrightMap
.
############################################################################# # EXAMPLE 1: ordered data - Partial credit model ############################################################################# data( data.gpcm ) # Model 1: partial credit model mod1 <- TAM::tam.mml( resp=data.gpcm,control=list( maxiter=200) ) summary(mod1) ## Item Parameters -A*Xsi ## item N M AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 ## 1 Comfort 392 0.880 -1.302 1.154 3.881 1 2 3 ## 2 Work 392 1.278 -1.706 -0.847 0.833 1 2 3 ## 3 Benefit 392 1.163 -1.233 -0.404 1.806 1 2 3 # Calculation of Thurstonian thresholds TAM::tam.threshold(mod1) ## Cat1 Cat2 Cat3 ## Comfort -1.325226 2.0717468 3.139801 ## Work -1.777679 0.6459045 1.971222 ## Benefit -1.343536 0.7491760 2.403168 ## Not run: ############################################################################# # EXAMPLE 2: Multidimensional model data.math ############################################################################# library(sirt) data(data.math, package="sirt") dat <- data.math$data # select items items1 <- grep("M[A-D]", colnames(dat), value=TRUE) items2 <- grep("M[H-I]", colnames(dat), value=TRUE) # select dataset dat <- dat[ c(items1,items2)] # create Q-matrix Q <- matrix( 0, nrow=ncol(dat), ncol=2 ) Q[ seq(1,length(items1) ), 1 ] <- 1 Q[ length(items1) + seq(1,length(items2) ), 2 ] <- 1 # fit two-dimensional model mod1 <- TAM::tam.mml( dat, Q=Q ) # compute thresholds (specify a probability level of .625) tmod1 <- TAM::tam.threshold( mod1, prob.lvl=.625 ) ############################################################################# # EXAMPLE 3: Creating Wright maps with the WrightMap package ############################################################################# library(WrightMap) # For conducting Wright maps in combination with TAM, see # http://wrightmap.org/post/100850738072/using-wrightmap-with-the-tam-package data(sim.rasch) dat <- sim.rasch # estimate Rasch model in TAM mod1 <- TAM::tam.mml(dat) summary(mod1) #--- A: creating a Wright map with WLEs # compute WLE wlemod1 <- TAM::tam.wle(mod1)$theta # extract thresholds tmod1 <- TAM::tam.threshold(mod1) # create Wright map WrightMap::wrightMap( thetas=wlemod1, thresholds=tmod1, label.items.srt=-90) #--- B: creating a Wright Map with population distribution # extract ability distribution and replicate observations uni.proficiency <- rep( mod1$theta[,1], round( mod1$pi.k * mod1$ic$n) ) # draw WrightMap WrightMap::wrightMap( thetas=uni.proficiency, thresholds=tmod1, label.items.rows=3) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.