Farlie-Gumbel-Morgenstern's Bivariate Distribution
Density, distribution function, and random generation for the (one parameter) bivariate Farlie-Gumbel-Morgenstern's distribution.
dbifgmcop(x1, x2, apar, log = FALSE) pbifgmcop(q1, q2, apar) rbifgmcop(n, apar)
x1, x2, q1, q2 |
vector of quantiles. |
n |
number of observations.
Same as in |
apar |
the association parameter. |
log |
Logical.
If |
See bifgmcop
, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation, for the formula of the
cumulative distribution function and other details.
dbifgmcop
gives the density,
pbifgmcop
gives the distribution function, and
rbifgmcop
generates random deviates (a two-column matrix).
T. W. Yee
## Not run: N <- 101; x <- seq(0.0, 1.0, len = N); apar <- 0.7 ox <- expand.grid(x, x) zedd <- dbifgmcop(ox[, 1], ox[, 2], apar = apar) contour(x, x, matrix(zedd, N, N), col = "blue") zedd <- pbifgmcop(ox[, 1], ox[, 2], apar = apar) contour(x, x, matrix(zedd, N, N), col = "blue") plot(r <- rbifgmcop(n = 3000, apar = apar), col = "blue") par(mfrow = c(1, 2)) hist(r[, 1]) # Should be uniform hist(r[, 2]) # Should be uniform ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.