Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

bifgmexp

Bivariate Farlie-Gumbel-Morgenstern Exponential Distribution Family Function


Description

Estimate the association parameter of FGM bivariate exponential distribution by maximum likelihood estimation.

Usage

bifgmexp(lapar = "rhobitlink", iapar = NULL, tola0 = 0.01, imethod = 1)

Arguments

lapar

Link function for the association parameter alpha, which lies between -1 and 1. See Links for more choices and other information.

iapar

Numeric. Optional initial value for alpha. By default, an initial value is chosen internally. If a convergence failure occurs try assigning a different value. Assigning a value will override the argument imethod.

tola0

Positive numeric. If the estimate of alpha has an absolute value less than this then it is replaced by this value. This is an attempt to fix a numerical problem when the estimate is too close to zero.

imethod

An integer with value 1 or 2 which specifies the initialization method. If failure to converge occurs try the other value, or else specify a value for ia.

Details

The cumulative distribution function is

P(Y1 <= y1, Y2 <= y2) = exp(-y1-y2) * ( 1 + alpha * [1 - exp(-y1)] * [1 - exp(-y2)] ) + 1 - exp(-y1) - exp(-y2)

for alpha between -1 and 1. The support of the function is for y1>0 and y2>0. The marginal distributions are an exponential distribution with unit mean. When alpha=0 then the random variables are independent, and this causes some problems in the estimation process since the distribution no longer depends on the parameter.

A variant of Newton-Raphson is used, which only seems to work for an intercept model. It is a very good idea to set trace = TRUE.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns and values equal to 1. This is because each marginal distribution corresponds to a exponential distribution with unit mean.

This VGAM family function should be used with caution.

Author(s)

T. W. Yee

References

Castillo, E., Hadi, A. S., Balakrishnan, N. Sarabia, J. S. (2005). Extreme Value and Related Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.

See Also

Examples

N <- 1000; mdata <- data.frame(y1 = rexp(N), y2 = rexp(N))
## Not run: plot(ymat)
fit <- vglm(cbind(y1, y2) ~ 1, bifgmexp, data = mdata, trace = TRUE)
fit <- vglm(cbind(y1, y2) ~ 1, bifgmexp, data = mdata, # This may fail
            trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))

VGAM

Vector Generalized Linear and Additive Models

v1.1-5
GPL-3
Authors
Thomas Yee [aut, cre], Cleve Moler [ctb] (author of several LINPACK routines)
Initial release
2021-01-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.