Exponential Geometric Distribution Family Function
Estimates the two parameters of the exponential geometric distribution by maximum likelihood estimation.
expgeometric(lscale = "loglink", lshape = "logitlink", iscale = NULL, ishape = NULL, tol12 = 1e-05, zero = 1, nsimEIM = 400)
lscale, lshape |
Link function for the two parameters.
See |
iscale, ishape |
Numeric. Optional initial values for the scale and shape parameters. |
tol12 |
Numeric. Tolerance for testing whether a parameter has value 1 or 2. |
zero, nsimEIM |
The exponential geometric distribution has density function
(1/c) * (1 - s) * e^(-y/c) * (1 - s * e^(-y/c))^(-2)
where y > 0, c > 0 and 0 < s < 1. The mean, (c * (s - 1)/ s) * log(1 - s) is returned as the fitted values. Note the median is c * log(2 - s). Simulated Fisher scoring is implemented.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
We define scale
as the reciprocal of the scale parameter
used by Adamidis and Loukas (1998).
J. G. Lauder and T. W. Yee
Adamidis, K., Loukas, S. (1998). A lifetime distribution with decreasing failure rate. Statistics and Probability Letters, 39, 35–42.
## Not run: Scale <- exp(2); shape = logitlink(-1, inverse = TRUE); edata <- data.frame(y = rexpgeom(n = 2000, scale = Scale, shape = shape)) fit <- vglm(y ~ 1, expgeometric, edata, trace = TRUE) c(with(edata, mean(y)), head(fitted(fit), 1)) coef(fit, matrix = TRUE) Coef(fit) summary(fit) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.