Folded Square Root Link Function
Computes the folded square root transformation, including its inverse and the first two derivatives.
foldsqrtlink(theta, min = 0, max = 1, mux = sqrt(2), inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
theta |
Numeric or character. See below for further details. |
min, max, mux |
These are called L, U and K below. |
inverse, deriv, short, tag |
Details at |
The folded square root link function can be applied to
parameters that lie between L and U inclusive.
Numerical values of theta
out of range result in NA
or NaN
.
For foldsqrtlink
with deriv = 0
:
K *
(sqrt(theta-L) - sqrt(U-theta))
or
mux * (sqrt(theta-min) - sqrt(max-theta))
when inverse = FALSE
,
and if inverse = TRUE
then some more
complicated function that returns a NA
unless
theta
is between -mux*sqrt(max-min)
and
mux*sqrt(max-min)
.
For deriv = 1
, then the function returns
d eta
/ d theta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
The default has, if theta
is 0 or 1, the link function
value is -sqrt(2)
and +sqrt(2)
respectively.
These are finite values, therefore one cannot use this link function for
general modelling of probabilities because of numerical problem,
e.g., with binomialff
, cumulative
. See
the example below.
Thomas W. Yee
p <- seq(0.01, 0.99, by = 0.01) foldsqrtlink(p) max(abs(foldsqrtlink(foldsqrtlink(p), inverse = TRUE) - p)) # Should be 0 p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01)) foldsqrtlink(p) # Has NAs ## Not run: p <- seq(0.01, 0.99, by = 0.01) par(mfrow = c(2, 2), lwd = (mylwd <- 2)) y <- seq(-4, 4, length = 100) for (d in 0:1) { matplot(p, cbind(logitlink(p, deriv = d), foldsqrtlink(p, deriv = d)), type = "n", col = "purple", ylab = "transformation", las = 1, main = if (d == 0) "Some probability link functions" else "First derivative") lines(p, logitlink(p, deriv = d), col = "limegreen") lines(p, probitlink(p, deriv = d), col = "purple") lines(p, clogloglink(p, deriv = d), col = "chocolate") lines(p, foldsqrtlink(p, deriv = d), col = "tan") if (d == 0) { abline(v = 0.5, h = 0, lty = "dashed") legend(0, 4.5, c("logitlink", "probitlink", "clogloglink", "foldsqrtlink"), lwd = 2, col = c("limegreen", "purple", "chocolate", "tan")) } else abline(v = 0.5, lty = "dashed") } for (d in 0) { matplot(y, cbind(logitlink(y, deriv = d, inverse = TRUE), foldsqrtlink(y, deriv = d, inverse = TRUE)), type = "n", col = "purple", xlab = "transformation", ylab = "p", lwd = 2, las = 1, main = if (d == 0) "Some inverse probability link functions" else "First derivative") lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "limegreen") lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "purple") lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "chocolate") lines(y, foldsqrtlink(y, deriv = d, inverse = TRUE), col = "tan") if (d == 0) { abline(h = 0.5, v = 0, lty = "dashed") legend(-4, 1, c("logitlink", "probitlink", "clogloglink", "foldsqrtlink"), lwd = 2, col = c("limegreen", "purple", "chocolate", "tan")) } } par(lwd = 1) ## End(Not run) # This is lucky to converge fit.h <- vglm(agaaus ~ sm.bs(altitude), binomialff(link = foldsqrtlink(mux = 5)), data = hunua, trace = TRUE) ## Not run: plotvgam(fit.h, se = TRUE, lcol = "orange", scol = "orange", main = "Orange is Hunua, Blue is Waitakere") ## End(Not run) head(predict(fit.h, hunua, type = "response")) ## Not run: # The following fails. pneumo <- transform(pneumo, let = log(exposure.time)) fit <- vglm(cbind(normal, mild, severe) ~ let, cumulative(link = foldsqrtlink(mux = 10), par = TRUE, rev = TRUE), data = pneumo, trace = TRUE, maxit = 200) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.