Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nbcanlink

Negative Binomial Canonical Link Function


Description

Computes the negative binomial canonical link transformation, including its inverse and the first two derivatives.

Usage

nbcanlink(theta, size = NULL, wrt.param = NULL, bvalue = NULL,
          inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)

Arguments

theta

Numeric or character. Typically the mean of a negative binomial distribution (NBD). See below for further details.

size, wrt.param

size contains the k matrix which must be of a conformable dimension as theta. Also, if deriv > 0 then wrt.param is either 1 or 2 (1 for with respect to the first parameter, and 2 for with respect to the second parameter (size)).

bvalue

Details at Links.

inverse, deriv, short, tag

Details at Links.

Details

The NBD canonical link is log(theta/(theta + k)) where theta is the NBD mean. The canonical link is used for theoretically relating the NBD to GLM class.

This link function was specifically written for negbinomial and negbinomial.size, and should not be used elsewhere (these VGAM family functions have code that specifically handles nbcanlink().)

Value

For deriv = 0, the above equation when inverse = FALSE, and if inverse = TRUE then kmatrix / expm1(-theta) where theta ie really eta. For deriv = 1, then the function returns d eta / d theta as a function of theta if inverse = FALSE, else if inverse = TRUE then it returns the reciprocal.

Warning

This function works with negbinomial but care is needed because it is numerically fraught. In particular, the first linear/additive predictor must have negative values, and finding good initial values may be difficult, leading to it crashing at the start. Hence the NB-C model is sensitive to the initial values and may converge to a local solution. Pages 210 and 309 of Hilbe (2011) notes convergence difficulties (of Newton-Raphson type algorithms), and some of that this applies here. Setting trace = TRUE is a good idea, as is trying various values of imethod in negbinomial.

Note

While theoretically nice, this function is not recommended in general since its value is always negative (linear predictors ought to be unbounded in general). A loglink link for argument lmu is recommended instead.

Numerical instability may occur when theta is close to 0 or 1. Values of theta which are less than or equal to 0 can be replaced by bvalue before computing the link function value. See Links.

Author(s)

Victor Miranda and Thomas W. Yee.

References

Miranda, V. S. and Yee, T. W. (2018). On mean function modelling for several one-parameter discrete distributions. Manuscript in preparation.

Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics and Data Analysis, 71, 889–902.

Hilbe, J. M. (2011). Negative Binomial Regression, 2nd Edition. Cambridge: Cambridge University Press.

See Also

Examples

nbcanlink("mu", short = FALSE)

mymu <- 1:10  # Test some basic operations:
kmatrix <- cbind(runif(length(mymu)))
eta1 <- nbcanlink(mymu, size = kmatrix)
ans2 <- nbcanlink(eta1, size = kmatrix, inverse = TRUE)
max(abs(ans2 - mymu))  # Should be 0

## Not run:  mymu <- seq(0.5, 10, length = 101)
kmatrix <- matrix(10, length(mymu), 1)
plot(nbcanlink(mymu, size = kmatrix) ~ mymu, las = 1,
     type = "l", col = "blue", xlab = expression({mu}))

## End(Not run)

# Estimate the parameters from some simulated data
ndata <- data.frame(x2 = runif(nn <- 100))
ndata <- transform(ndata, eta1 = -1 - 1 * x2,  # eta1 < 0
                          size1 = exp(1),
                          size2 = exp(2))
ndata <- transform(ndata,
            mu1 = nbcanlink(eta1, size = size1, inverse = TRUE),
            mu2 = nbcanlink(eta1, size = size2, inverse = TRUE))
ndata <- transform(ndata, y1 = rnbinom(nn, mu = mu1, size = size1),
                          y2 = rnbinom(nn, mu = mu2, size = size2))
summary(ndata)

nbcfit <- vglm(cbind(y1, y2) ~ x2,
            negbinomial(lmu = "nbcanlink", imethod = 1),  # Try this
#            negbinomial(lmu = "nbcanlink", imethod = 2),  # Try this
            data = ndata, trace = TRUE)
coef(nbcfit, matrix = TRUE)
summary(nbcfit)

VGAM

Vector Generalized Linear and Additive Models

v1.1-5
GPL-3
Authors
Thomas Yee [aut, cre], Cleve Moler [ctb] (author of several LINPACK routines)
Initial release
2021-01-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.