The Pareto(IV/III/II) Distributions
Density, distribution function, quantile function and random generation for the Pareto(IV/III/II) distributions.
dparetoIV(x, location = 0, scale = 1, inequality = 1, shape = 1, log = FALSE) pparetoIV(q, location = 0, scale = 1, inequality = 1, shape = 1, lower.tail = TRUE, log.p = FALSE) qparetoIV(p, location = 0, scale = 1, inequality = 1, shape = 1, lower.tail = TRUE, log.p = FALSE) rparetoIV(n, location = 0, scale = 1, inequality = 1, shape = 1) dparetoIII(x, location = 0, scale = 1, inequality = 1, log = FALSE) pparetoIII(q, location = 0, scale = 1, inequality = 1, lower.tail = TRUE, log.p = FALSE) qparetoIII(p, location = 0, scale = 1, inequality = 1, lower.tail = TRUE, log.p = FALSE) rparetoIII(n, location = 0, scale = 1, inequality = 1) dparetoII(x, location = 0, scale = 1, shape = 1, log = FALSE) pparetoII(q, location = 0, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE) qparetoII(p, location = 0, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE) rparetoII(n, location = 0, scale = 1, shape = 1) dparetoI(x, scale = 1, shape = 1, log = FALSE) pparetoI(q, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE) qparetoI(p, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE) rparetoI(n, scale = 1, shape = 1)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations.
Same as in |
location |
the location parameter. |
scale, shape, inequality |
the (positive) scale, inequality and shape parameters. |
log |
Logical.
If |
lower.tail, log.p |
For the formulas and other details
see paretoIV
.
Functions beginning with the letter d
give the density,
functions beginning with the letter p
give the distribution function,
functions beginning with the letter q
give the quantile function, and
functions beginning with the letter r
generates random deviates.
The functions [dpqr]paretoI
are the same as [dpqr]pareto
except for a slight change in notation: s=k and
b=alpha; see Pareto
.
T. W. Yee and Kai Huang
Brazauskas, V. (2003). Information matrix for Pareto(IV), Burr, and related distributions. Comm. Statist. Theory and Methods 32, 315–325.
Arnold, B. C. (1983). Pareto Distributions. Fairland, Maryland: International Cooperative Publishing House.
## Not run: x <- seq(-0.2, 4, by = 0.01) loc <- 0; Scale <- 1; ineq <- 1; shape <- 1.0 plot(x, dparetoIV(x, loc, Scale, ineq, shape), type = "l", col = "blue", main = "Blue is density, orange is cumulative distribution function", sub = "Purple are 5,10,...,95 percentiles", ylim = 0:1, las = 1, ylab = "") abline(h = 0, col = "blue", lty = 2) Q <- qparetoIV(seq(0.05, 0.95,by = 0.05), loc, Scale, ineq, shape) lines(Q, dparetoIV(Q, loc, Scale, ineq, shape), col = "purple", lty = 3, type = "h") lines(x, pparetoIV(x, loc, Scale, ineq, shape), col = "orange") abline(h = 0, lty = 2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.