Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

perks

Perks Distribution Family Function


Description

Maximum likelihood estimation of the 2-parameter Perks distribution.

Usage

perks(lscale = "loglink", lshape = "loglink",
      iscale = NULL,   ishape = NULL,
      gscale = exp(-5:5), gshape = exp(-5:5),
      nsimEIM = 500, oim.mean = FALSE, zero = NULL, nowarning = FALSE)

Arguments

nowarning

Logical. Suppress a warning? Ignored for VGAM 0.9-7 and higher.

lscale, lshape

Parameter link functions applied to the shape parameter shape, scale parameter scale. All parameters are treated as positive here See Links for more choices.

iscale, ishape

Optional initial values. A NULL means a value is computed internally.

gscale, gshape

See CommonVGAMffArguments.

nsimEIM, zero

See CommonVGAMffArguments.

oim.mean

To be currently ignored.

Details

The Perks distribution has cumulative distribution function

F(y; alpha, beta) = 1 - ((1 + α)/(1 + alpha * e^(beta * y)))^(1 / beta)

which leads to a probability density function

f(y; alpha, beta) = [ 1 + alpha]^(1 / β) * alpha * exp(beta * y) / (1 + alpha * exp(beta * y))^(1 + 1 / beta)

for alpha > 0, beta > 0, y > 0. Here, beta is called the scale parameter scale, and alpha is called a shape parameter. The moments for this distribution do not appear to be available in closed form.

Simulated Fisher scoring is used and multiple responses are handled.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.

Warning

A lot of care is needed because this is a rather difficult distribution for parameter estimation. If the self-starting initial values fail then try experimenting with the initial value arguments, especially iscale. Successful convergence depends on having very good initial values. Also, monitor convergence by setting trace = TRUE.

Author(s)

T. W. Yee

References

Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, 63, 12–40.

Richards, S. J. (2012). A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal. 1–25.

See Also

Examples

## Not run:  set.seed(123)
pdata <- data.frame(x2 = runif(nn <- 1000))  # x2 unused
pdata <- transform(pdata, eta1  = -1,
                          ceta1 =  1)
pdata <- transform(pdata, shape1 = exp(eta1),
                          scale1 = exp(ceta1))
pdata <- transform(pdata, y1 = rperks(nn, shape = shape1, scale = scale1))
fit1 <- vglm(y1 ~ 1, perks, data = pdata, trace = TRUE)
coef(fit1, matrix = TRUE)
summary(fit1)

## End(Not run)

VGAM

Vector Generalized Linear and Additive Models

v1.1-5
GPL-3
Authors
Thomas Yee [aut, cre], Cleve Moler [ctb] (author of several LINPACK routines)
Initial release
2021-01-13

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.