The Singh-Maddala Distribution
Density, distribution function, quantile function and random
generation for the Singh-Maddala distribution with shape parameters a
and q
, and scale parameter scale
.
dsinmad(x, scale = 1, shape1.a, shape3.q, log = FALSE) psinmad(q, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE) qsinmad(p, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE) rsinmad(n, scale = 1, shape1.a, shape3.q)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1.a, shape3.q |
shape parameters. |
scale |
scale parameter. |
log |
Logical.
If |
lower.tail, log.p |
See sinmad
, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
dsinmad
gives the density,
psinmad
gives the distribution function,
qsinmad
gives the quantile function, and
rsinmad
generates random deviates.
The Singh-Maddala distribution is a special case of the 4-parameter generalized beta II distribution.
T. W. Yee and Kai Huang
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
sdata <- data.frame(y = rsinmad(n = 3000, scale = exp(2), shape1 = exp(1), shape3 = exp(1))) fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = 2.1), data = sdata, trace = TRUE, crit = "coef") coef(fit, matrix = TRUE) Coef(fit)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.