Defining Penalized Spline Smooths in VGAM Formulas
This function represents a P-spline smooth term
in a vgam
formula
and confers automatic smoothing parameter selection.
sm.ps(x, ..., ps.int = NULL, spar = -1, degree = 3, p.order = 2, ridge.adj = 1e-5, spillover = 0.01, maxspar = 1e12, outer.ok = FALSE, mux = NULL, fixspar = FALSE)
x, ... |
See |
ps.int |
the number of equally-spaced B-spline intervals.
Note that the number of knots is equal to
|
spar, maxspar |
See |
mux |
numeric. If given, then this argument multiplies
|
degree |
degree of B-spline basis. Usually this will be 2 or 3; and the values 1 or 4 might possibly be used. |
p.order |
order of difference penalty (0 is the ridge penalty). |
ridge.adj, spillover |
See |
outer.ok, fixspar |
See |
This function can be used by vgam
to
allow automatic smoothing parameter selection based on
P-splines and minimizing an UBRE quantity.
A matrix with attributes that are (only) used by vgam
.
The number of rows of the matrix is length(x)
and
the number of columns is ps.int + degree - 1
.
The latter is because the function is centred.
See sm.os
.
This function is currently under development and
may change in the future.
In particular, the default for ps.int
is
subject to change.
B. D. Marx wrote the original function. Subsequent edits were made by T. W. Yee and C. Somchit.
Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statistical Science, 11(2): 89–121.
sm.os
,
s
,
vgam
,
smartpred
,
is.smart
,
summarypvgam
,
splineDesign
,
bs
,
magic
.
sm.ps(runif(20)) sm.ps(runif(20), ps.int = 5) ## Not run: data("TravelMode", package = "AER") # Need to install "AER" first air.df <- subset(TravelMode, mode == "air") # Form 4 smaller data frames bus.df <- subset(TravelMode, mode == "bus") trn.df <- subset(TravelMode, mode == "train") car.df <- subset(TravelMode, mode == "car") TravelMode2 <- data.frame(income = air.df$income, wait.air = air.df$wait - car.df$wait, wait.trn = trn.df$wait - car.df$wait, wait.bus = bus.df$wait - car.df$wait, gcost.air = air.df$gcost - car.df$gcost, gcost.trn = trn.df$gcost - car.df$gcost, gcost.bus = bus.df$gcost - car.df$gcost, wait = air.df$wait) # Value is unimportant TravelMode2$mode <- subset(TravelMode, choice == "yes")$mode # The response TravelMode2 <- transform(TravelMode2, incom.air = income, incom.trn = 0, incom.bus = 0) set.seed(1) TravelMode2 <- transform(TravelMode2, junkx2 = runif(nrow(TravelMode2))) tfit2 <- vgam(mode ~ sm.ps(gcost.air, gcost.trn, gcost.bus) + ns(junkx2, 4) + sm.ps(incom.air, incom.trn, incom.bus) + wait , crit = "coef", multinomial(parallel = FALSE ~ 1), data = TravelMode2, xij = list(sm.ps(gcost.air, gcost.trn, gcost.bus) ~ sm.ps(gcost.air, gcost.trn, gcost.bus) + sm.ps(gcost.trn, gcost.bus, gcost.air) + sm.ps(gcost.bus, gcost.air, gcost.trn), sm.ps(incom.air, incom.trn, incom.bus) ~ sm.ps(incom.air, incom.trn, incom.bus) + sm.ps(incom.trn, incom.bus, incom.air) + sm.ps(incom.bus, incom.air, incom.trn), wait ~ wait.air + wait.trn + wait.bus), form2 = ~ sm.ps(gcost.air, gcost.trn, gcost.bus) + sm.ps(gcost.trn, gcost.bus, gcost.air) + sm.ps(gcost.bus, gcost.air, gcost.trn) + wait + sm.ps(incom.air, incom.trn, incom.bus) + sm.ps(incom.trn, incom.bus, incom.air) + sm.ps(incom.bus, incom.air, incom.trn) + junkx2 + ns(junkx2, 4) + incom.air + incom.trn + incom.bus + gcost.air + gcost.trn + gcost.bus + wait.air + wait.trn + wait.bus) par(mfrow = c(2, 2)) plot(tfit2, se = TRUE, lcol = "orange", scol = "blue", ylim = c(-4, 4)) summary(tfit2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.