Zero-Altered Poisson Distribution
Fits a zero-altered Poisson distribution based on a conditional model involving a Bernoulli distribution and a positive-Poisson distribution.
zapoisson(lpobs0 = "logitlink", llambda = "loglink", type.fitted = c("mean", "lambda", "pobs0", "onempobs0"), imethod = 1, ipobs0 = NULL, ilambda = NULL, ishrinkage = 0.95, probs.y = 0.35, zero = NULL) zapoissonff(llambda = "loglink", lonempobs0 = "logitlink", type.fitted = c("mean", "lambda", "pobs0", "onempobs0"), imethod = 1, ilambda = NULL, ionempobs0 = NULL, ishrinkage = 0.95, probs.y = 0.35, zero = "onempobs0")
lpobs0 |
Link function for the parameter pobs0, called |
llambda |
Link function for the usual lambda parameter.
See |
type.fitted |
See |
lonempobs0 |
Corresponding argument for the other parameterization. See details below. |
imethod, ipobs0, ionempobs0, ilambda, ishrinkage |
See |
probs.y, zero |
See |
The response Y is zero with probability pobs0, else Y has a positive-Poisson(lambda) distribution with probability 1-pobs0. Thus 0 < pobs0 < 1, which is modelled as a function of the covariates. The zero-altered Poisson distribution differs from the zero-inflated Poisson distribution in that the former has zeros coming from one source, whereas the latter has zeros coming from the Poisson distribution too. Some people call the zero-altered Poisson a hurdle model.
For one response/species, by default, the two linear/additive
predictors for zapoisson()
are (logit(pobs0),
log(lambda))^T.
The VGAM family function zapoissonff()
has a few
changes compared to zapoisson()
.
These are:
(i) the order of the linear/additive predictors is switched so the
Poisson mean comes first;
(ii) argument onempobs0
is now 1 minus the probability of an observed 0,
i.e., the probability of the positive Poisson distribution,
i.e., onempobs0
is 1-pobs0
;
(iii) argument zero
has a new default so that the onempobs0
is intercept-only by default.
Now zapoissonff()
is generally recommended over
zapoisson()
.
Both functions implement Fisher scoring and can handle
multiple responses.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The fitted.values
slot of the fitted object,
which should be extracted by the generic function fitted
,
returns the mean mu (default) which is given by
mu = (1-pobs0) * lambda / [1 - exp(-lambda)].
If type.fitted = "pobs0"
then pobs0 is returned.
Note this family function allows pobs0 to be modelled as functions of the covariates.
This family function effectively combines pospoisson
and binomialff
into one family function.
This family function can handle multiple responses,
e.g., more than one species.
It is recommended that Gaitpois
be used, e.g.,
rgaitpois(nn, lambda, pobs.mlm = pobs0, alt.mlm = 0)
instead of
rzapois(nn, lambda, pobs0 = pobs0)
.
T. W. Yee
Welsh, A. H., Cunningham, R. B., Donnelly, C. F. and Lindenmayer, D. B. (1996). Modelling the abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling, 88, 297–308.
Angers, J-F. and Biswas, A. (2003). A Bayesian analysis of zero-inflated generalized Poisson model. Computational Statistics & Data Analysis, 42, 37–46.
Yee, T. W. (2014). Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics and Data Analysis, 71, 889–902.
zdata <- data.frame(x2 = runif(nn <- 1000)) zdata <- transform(zdata, pobs0 = logitlink( -1 + 1*x2, inverse = TRUE), lambda = loglink(-0.5 + 2*x2, inverse = TRUE)) zdata <- transform(zdata, y = rgaitpois(nn, lambda, pobs.mlm = pobs0, alt.mlm = 0)) with(zdata, table(y)) fit <- vglm(y ~ x2, zapoisson, data = zdata, trace = TRUE) fit <- vglm(y ~ x2, zapoisson, data = zdata, trace = TRUE, crit = "coef") head(fitted(fit)) head(predict(fit)) head(predict(fit, untransform = TRUE)) coef(fit, matrix = TRUE) summary(fit) # Another example ------------------------------ # Data from Angers and Biswas (2003) abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, 0, 0, 1)) abdata <- subset(abdata, w > 0) Abdata <- data.frame(yy = with(abdata, rep(y, w))) fit3 <- vglm(yy ~ 1, zapoisson, data = Abdata, trace = TRUE, crit = "coef") coef(fit3, matrix = TRUE) Coef(fit3) # Estimate lambda (they get 0.6997 with SE 0.1520) head(fitted(fit3), 1) with(Abdata, mean(yy)) # Compare this with fitted(fit3)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.