Positive-Binomial Distribution
Density, distribution function, quantile function and random generation for the positive-binomial distribution.
dposbinom(x, size, prob, log = FALSE) pposbinom(q, size, prob) qposbinom(p, size, prob) rposbinom(n, size, prob)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations.
Fed into |
size |
number of trials.
It is the N symbol in the formula
given in |
prob |
probability of success on each trial. Should be in (0,1). |
log |
See
|
The positive-binomial distribution is a binomial distribution but with the probability of a zero being zero. The other probabilities are scaled to add to unity. The mean therefore is
mu / (1-(1-mu)^N)
where mu is the argument prob
above.
As mu increases, the positive-binomial and binomial
distributions become more similar.
Unlike similar functions for the binomial distribution, a zero value
of prob
is not permitted here.
dposbinom
gives the density,
pposbinom
gives the distribution function,
qposbinom
gives the quantile function, and
rposbinom
generates random deviates.
These functions are or are likely to be deprecated.
Use Gaitbinom
instead.
For dposbinom()
, if arguments size
or prob
equal 0 then a NaN
is returned.
The family function posbinomial
estimates the
parameters by maximum likelihood estimation.
T. W. Yee.
prob <- 0.2; size <- 10 table(y <- rposbinom(n = 1000, size, prob)) mean(y) # Sample mean size * prob / (1 - (1 - prob)^size) # Population mean (ii <- dposbinom(0:size, size, prob)) cumsum(ii) - pposbinom(0:size, size, prob) # Should be 0s table(rposbinom(100, size, prob)) table(qposbinom(runif(1000), size, prob)) round(dposbinom(1:10, size, prob) * 1000) # Should be similar ## Not run: barplot(rbind(dposbinom(x = 0:size, size, prob), dbinom(x = 0:size, size, prob)), beside = TRUE, col = c("blue", "green"), main = paste("Positive-binomial(", size, ",", prob, ") (blue) vs", " Binomial(", size, ",", prob, ") (green)", sep = ""), names.arg = as.character(0:size), las = 1) ## End(Not run) # Simulated data example nn <- 1000; sizeval1 <- 10; sizeval2 <- 20 pdata <- data.frame(x2 = seq(0, 1, length = nn)) pdata <- transform(pdata, prob1 = logitlink(-2 + 2 * x2, inverse = TRUE), prob2 = logitlink(-1 + 1 * x2, inverse = TRUE), sizev1 = rep(sizeval1, len = nn), sizev2 = rep(sizeval2, len = nn)) pdata <- transform(pdata, y1 = rposbinom(nn, size = sizev1, prob = prob1), y2 = rposbinom(nn, size = sizev2, prob = prob2)) with(pdata, table(y1)) with(pdata, table(y2)) # Multiple responses fit2 <- vglm(cbind(y1, y2) ~ x2, posbinomial(multiple.responses = TRUE), trace = TRUE, data = pdata, weight = cbind(sizev1, sizev2)) coef(fit2, matrix = TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.