Error performance measures
Various error measures evaluating the quality of imputations
evaluation(x, y, m, vartypes = "guess") nrmse(x, y, m) pfc(x, y, m) msecov(x, y) msecor(x, y)
x |
matrix or data frame |
y |
matrix or data frame of the same size as x |
m |
the indicator matrix for missing cells |
vartypes |
a vector of length ncol(x) specifying the variables types, like factor or numeric |
This function has been mainly written for procudures that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be used for expressing the number of rounded zeros.
the error measures value
Matthias Templ
M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression imputation using standard and robust methods. Journal of Computational Statistics and Data Analysis, Vol. 55, pp. 2793-2806.
data(iris) iris_orig <- iris_imp <- iris iris_imp$Sepal.Length[sample(1:nrow(iris), 10)] <- NA iris_imp$Sepal.Width[sample(1:nrow(iris), 10)] <- NA iris_imp$Species[sample(1:nrow(iris), 10)] <- NA m <- is.na(iris_imp) iris_imp <- kNN(iris_imp, imp_var = FALSE) evaluation(iris_orig, iris_imp, m = m, vartypes = c(rep("numeric", 4), "factor")) msecov(iris_orig[, 1:4], iris_imp[, 1:4])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.