Random Forest Imputation
Impute missing values based on a random forest model using ranger::ranger()
rangerImpute( formula, data, imp_var = TRUE, imp_suffix = "imp", ..., verbose = FALSE, median = FALSE )
formula |
model formula for the imputation |
data |
A |
imp_var |
|
imp_suffix |
suffix used for TF imputation variables |
... |
Arguments passed to |
verbose |
Show the number of observations used for training
and evaluating the RF-Model. This parameter is also passed down to
|
median |
Use the median (rather than the arithmetic mean) to average the values of individual trees for a more robust estimate. |
the imputed data set.
Other imputation methods:
hotdeck()
,
irmi()
,
kNN()
,
matchImpute()
,
regressionImp()
data(sleep) rangerImpute(Dream+NonD~BodyWgt+BrainWgt,data=sleep)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.