Second Derivatives of the h-Function of a Bivariate Copula
This function evaluates the second derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) and/or its arguments.
BiCopHfuncDeriv2( u1, u2, family, par, par2 = 0, deriv = "par", obj = NULL, check.pars = TRUE )
u1, u2 |
numeric vectors of equal length with values in [0,1]. |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
integer; single number or vector of size |
deriv |
Derivative argument |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopHfuncDeriv2(u1, u2, obj, deriv = "par")
can be used.
A numeric vector of the second-order conditional bivariate copula derivative
of the copula family
with parameter(s) par
, par2
with respect to deriv
evaluated at u1
and u2
.
Ulf Schepsmeier, Jakob Stoeber
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
## simulate from a bivariate Student-t copula set.seed(123) cop <- BiCop(family = 2, par = -0.7, par2 = 4) simdata <- BiCopSim(100, cop) ## second derivative of the conditional bivariate t-copula ## with respect to the first parameter u1 <- simdata[,1] u2 <- simdata[,2] BiCopHfuncDeriv2(u1, u2, cop, deriv = "par") ## estimate a Student-t copula for the simulated data cop <- BiCopEst(u1, u2, family = 2) ## and evaluate the derivative of the conditional copula ## w.r.t. the second argument u2 BiCopHfuncDeriv2(u1, u2, cop, deriv = "u2")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.