Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

BiCopIndTest

Independence Test for Bivariate Copula Data


Description

This function returns the p-value of a bivariate asymptotic independence test based on Kendall's τ.

Usage

BiCopIndTest(u1, u2)

Arguments

u1, u2

Data vectors of equal length with values in [0,1].

Details

The test exploits the asymptotic normality of the test statistic

statistic := T = ( (9N(N-1)) / (2(2N+5)) )^0.5 * |τ|,

where N is the number of observations (length of u1) and \hat{τ} the empirical Kendall's tau of the data vectors u1 and u2. The p-value of the null hypothesis of bivariate independence hence is asymptotically

p.value = 2*(1-Φ(T)),

where Φ is the standard normal distribution function.

Value

statistic

Test statistic of the independence test.

p.value

P-value of the independence test.

Author(s)

Jeffrey Dissmann

References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

Examples

## Example 1: Gaussian copula with large dependence parameter
cop <- BiCop(1, 0.7)
dat <- BiCopSim(500, cop)

# perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])

## Example 2: Gaussian copula with small dependence parameter
cop <- BiCop(1, 0.01)
dat <- BiCopSim(500, cop)

# perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])

VineCopula

Statistical Inference of Vine Copulas

v2.4.1
GPL (>= 2)
Authors
Thomas Nagler [aut, cre], Ulf Schepsmeier [aut], Jakob Stoeber [aut], Eike Christian Brechmann [aut], Benedikt Graeler [aut], Tobias Erhardt [aut], Carlos Almeida [ctb], Aleksey Min [ctb, ths], Claudia Czado [ctb, ths], Mathias Hofmann [ctb], Matthias Killiches [ctb], Harry Joe [ctb], Thibault Vatter [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.