Contour Plot of Bivariate Meta Distribution
Note: This function is deprecated and only available for backwards
compatibility. See contour.BiCop()
for contour plots of
parametric copulas, and BiCopKDE()
for kernel estimates.
BiCopMetaContour( u1 = NULL, u2 = NULL, bw = 1, size = 100, levels = c(0.01, 0.05, 0.1, 0.15, 0.2), family = "emp", par = 0, par2 = 0, PLOT = TRUE, margins = "norm", margins.par = 0, xylim = NA, obj = NULL, ... )
u1, u2 |
Data vectors of equal length with values in [0,1] (default:
|
bw |
Bandwidth (smoothing factor; default: |
size |
Number of grid points; default: |
levels |
Vector of contour levels. For Gaussian, Student-t or
exponential margins the default value ( |
family |
An integer defining the bivariate copula family or indicating
an empirical contour plot: |
par |
Copula parameter; if empirical contour plot, |
par2 |
Second copula parameter for t-, BB1, BB6, BB7, BB8, Tawn type 1
and type 2 copulas (default: |
PLOT |
Logical; whether the results are plotted. If |
margins |
Character; margins for the bivariate copula contour plot.
Possible margins are: |
margins.par |
Parameter(s) of the distribution of the margins if
necessary (default: |
xylim |
A 2-dimensional vector of the x- and y-limits. By default
( |
obj |
|
... |
Additional plot arguments. |
x |
A vector of length |
y |
A vector of length |
z |
A matrix of dimension
|
The combination family = 0
(independence copula) and
margins = "unif"
(uniform margins) is not possible because all
z
-values are equal.
Ulf Schepsmeier, Alexander Bauer
## meta Clayton distribution with Gaussian margins cop <- BiCop(family = 1, tau = 0.5) BiCopMetaContour(obj = cop, main = "Clayton - normal margins") # better: contour(cop, main = "Clayton - normal margins") ## empirical contour plot with standard normal margins dat <- BiCopSim(1000, cop) BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, family = "emp", main = "empirical - normal margins") # better: BiCopKDE(dat[, 1], dat[, 2], main = "empirical - normal margins") ## empirical contour plot with exponential margins BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, main = "empirical - exponential margins", margins = "exp", margins.par = 1) # better: BiCopKDE(dat[, 1], dat[, 2], main = "empirical - exponential margins", margins = "exp")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.