Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

BiCopPar2TailDep

Tail Dependence Coefficients of a Bivariate Copula


Description

This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.

Usage

BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

family

integer; single number or vector of size n; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; survival BB1”)
18 = rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size n; copula parameter.

par2

numeric; single number or vector of size n; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop object obj, the alternative version

BiCopPar2TailDep(obj)

can be used.

Value

lower

Lower tail dependence coefficient for the given bivariate copula family and parameter(s) par, par2:

λ_L = lim_{u->0} C(u,u)/u

upper

Upper tail dependence coefficient for the given bivariate copula family family and parameter(s) par, par2:

λ_U = lim_{u->1}(1-2u+C(u,u))/(1-u)

Lower and upper tail dependence coefficients for bivariate copula families and parameters (θ for one parameter families and the first parameter of the t-copula with ν degrees of freedom, θ and δ for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.

No. Lower tail dependence Upper tail dependence
1 - -
2 2t_{ν+1}(-√{ν+1}√{(1-θ)/(1+θ)}) 2t_{ν+1}(-√{ν+1}√{(1-θ)/(1+θ)})
3 2^{-1/θ} -
4 - 2-2^{1/θ}
5 - -
6 - 2-2^{1/θ}
7 2^{-1/(θδ)} 2-2^{1/δ}
8 - 2-2^{1/(θδ)}
9 2^{-1/δ} 2-2^{1/θ}
10 - 2-2^{1/θ} if δ=1 otherwise 0
13 - 2^{-1/θ}
14 2-2^{1/θ} -
16 2-2^{1/θ} -
17 2-2^{1/δ} 2^{-1/(θδ)}
18 2-2^{1/(θδ)} -
19 2-2^{1/θ} 2^{-1/δ}
20 2-2^{1/θ} if δ=1 otherwise 0 -
23, 33 - -
24, 34 - -
26, 36 - -
27, 37 - -
28, 38 - -
29, 39 - -
30, 40 - -
104,204 - δ+1-(δ^{θ}+1)^{1/θ}
114, 214 1+δ-(δ^{θ}+1)^{1/θ} -
124, 224 - -
134, 234 - -

Note

The number n can be chosen arbitrarily, but must agree across arguments.

Author(s)

Eike Brechmann

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

Examples

## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep  # alternative

## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)

## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)

VineCopula

Statistical Inference of Vine Copulas

v2.4.1
GPL (>= 2)
Authors
Thomas Nagler [aut, cre], Ulf Schepsmeier [aut], Jakob Stoeber [aut], Eike Christian Brechmann [aut], Benedikt Graeler [aut], Tobias Erhardt [aut], Carlos Almeida [ctb], Aleksey Min [ctb, ths], Claudia Czado [ctb, ths], Mathias Hofmann [ctb], Matthias Killiches [ctb], Harry Joe [ctb], Thibault Vatter [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.