Sequential Estimation of an R-Vine Copula Model
This function sequentially estimates the pair-copula parameters of a
d-dimensional R-vine copula model as specified by the corresponding
RVineMatrix() object.
RVineSeqEst( data, RVM, method = "mle", se = FALSE, max.df = 30, max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)), progress = FALSE, weights = NA, cores = 1 )
| data | An N x d data matrix (with uniform margins). | 
| RVM | An  | 
| method | indicates the estimation method: either maximum
likelihood estimation ( | 
| se | Logical; whether standard errors are estimated (default:  | 
| max.df | Numeric; upper bound for the estimation of the degrees of
freedom parameter of the t-copula (default:  | 
| max.BB | List; upper bounds for the estimation of the two parameters
(in absolute values) of the BB1, BB6, BB7 and BB8 copulas  | 
| progress | Logical; whether the pairwise estimation progress is printed
(default:  | 
| weights | Numerical; weights for each observation (optional). | 
| cores | integer; if  | 
The pair-copula parameter estimation is performed tree-wise, i.e., for each
R-vine tree the results from the previous tree(s) are used to calculate the
new copula parameters using BiCopEst().
An RVineMatrix() object with the sequentially
estimated parameters stored in RVM$par and RVM$par2. The object
is augmented by the following information about the fit:
| se, se2 | standard errors for the parameter estimates (if
 | 
| nobs | number of observations, | 
| logLik, pair.logLik | log likelihood (overall and pairwise) | 
| AIC, pair.AIC | Aikaike's Informaton Criterion (overall and pairwise), | 
| BIC, pair.BIC | Bayesian's Informaton Criterion (overall and pairwise), | 
| emptau | matrix of empirical values of Kendall's tau, | 
| p.value.indeptest | matrix of p-values of the independence test. | 
For a comprehensive summary of the fitted model, use
summary(object); to see all its contents, use str(object).
Ulf Schepsmeier, Jeffrey Dissmann, Thomas Nagler
# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)
# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))
# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)
# sequential estimation
summary(RVineSeqEst(simdata, RVM, method = "itau", se = TRUE))
summary(RVineSeqEst(simdata, RVM, method = "mle", se = TRUE))Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.