Empirical Balancing Calibration Weighting
This page explains the details of estimating weights using empirical balancing calibration weighting (EBCW) by setting method = "ebcw"
in the call to weightit()
. This method can be used with binary and multinomial treatments.
For binary treatments, this method estimates the weights using ATE()
with ATT = TRUE
. The following estimands are allowed: ATE, ATT, and ATC. The weights are taken from the output of the ATE
fit object. When the ATE is requested, ATE()
is run twice, once for each treatment group.
For multinomial treatments, this method estimates the weights using ATE()
with ATT = TRUE
. The following estimands are allowed: ATE and ATT. The weights are taken from the output of the ATE
fit objects. When the ATE is requested, ATE()
is run once for each treatment group. When the ATT is requested, ATE()
is run once for each non-focal (i.e., control) group.
Continuous treatments are not supported.
For longitudinal treatments, the weights are the product of the weights estimated at each time point. This method is not guaranteed to yield exact balance at each time point. NOTE: the use of EBCW with longitudinal treatments has not been validated!
Sampling weights are supported through s.weights
in all scenarios.
In the presence of missing data, the following value(s) for missing
are allowed:
"ind"
(default)First, for each variable with missingness, a new missingness indicator variable is created which takes the value 1 if the original covariate is NA
and 0 otherwise. The missingness indicators are added to the model formula as main effects. The missing values in the covariates are then replaced with 0s (this value is arbitrary and does not affect estimation). The weight estimation then proceeds with this new formula and set of covariates. The covariates output in the resulting weightit
object will be the original covariates with the NA
s.
All arguments to ATE()
can be passed through weightit()
, with the following exceptions:
ATT
is ignored because the estimand is passed using estimand
.
All arguments take on the defaults of those in ATE
.
obj
When include.obj = TRUE
, the empirical balancing calibration model fit. For binary treatments with estimand = "ATT"
, the output of the call to ATE::ATE()
. For binary treatments with estimand = "ATE"
and multinomial treatments, a list of outputs of calls to ATE::ATE()
.
Chan, K. C. G., Yam, S. C. P., & Zhang, Z. (2016). Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(3), 673–700. doi: 10.1111/rssb.12129
library("cobalt") data("lalonde", package = "cobalt") #Balancing covariates between treatment groups (binary) (W1 <- weightit(treat ~ age + educ + married + nodegree + re74, data = lalonde, method = "ebcw", estimand = "ATT")) summary(W1) bal.tab(W1) #Balancing covariates with respect to race (multinomial) (W2 <- weightit(race ~ age + educ + married + nodegree + re74, data = lalonde, method = "ebcw", estimand = "ATE")) summary(W2) bal.tab(W2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.