The Gumbel Distribution
Density function, distribution function, quantile function, random
generation and raw moments for the Gumbel extreme value distribution
with parameters alpha
and scale
.
dgumbel(x, alpha, scale, log = FALSE) pgumbel(q, alpha, scale, lower.tail = TRUE, log.p = FALSE) qgumbel(p, alpha, scale, lower.tail = TRUE, log.p = FALSE) rgumbel(n, alpha, scale) mgumbel(order, alpha, scale) mgfgumbel(t, alpha, scale, log = FALSE)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
location parameter. |
scale |
parameter. Must be strictly positive. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. Only values 1 and 2 are supported. |
t |
numeric vector. |
The Gumbel distribution with parameters alpha
= a and scale
= s has distribution
function:
F(x) = exp[-exp(-(x - a)/s)],
for -Inf < x < Inf, -Inf < a < Inf and s > 0.
The mode of the distribution is in a, the mean is a + g * s, where g = 0.57721566 is the Euler-Mascheroni constant, and the variance is (pi * s)^2/6.
dgumbel
gives the density,
pgumbel
gives the distribution function,
qgumbel
gives the quantile function,
rgumbel
generates random deviates,
mgumbel
gives the kth raw moment, k = 1, 2, and
mgfgamma
gives the moment generating function in t
.
Invalid arguments will result in return value NaN
, with a warning.
Distribution also knonw as the generalized extreme value distribution Type-I.
The "distributions"
package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Vincent Goulet vincent.goulet@act.ulaval.ca
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
dgumbel(c(-5, 0, 10, 20), 0.5, 2) p <- (1:10)/10 pgumbel(qgumbel(p, 2, 3), 2, 3) curve(pgumbel(x, 0.5, 2), from = -5, to = 20, col = "red") curve(pgumbel(x, 1.0, 2), add = TRUE, col = "green") curve(pgumbel(x, 1.5, 3), add = TRUE, col = "blue") curve(pgumbel(x, 3.0, 4), add = TRUE, col = "cyan") a <- 3; s <- 4 mgumbel(1, a, s) # mean a - s * digamma(1) # same mgumbel(2, a, s) - mgumbel(1, a, s)^2 # variance (pi * s)^2/6 # same
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.