The Inverse Pareto Distribution
Density function, distribution function, quantile function, random generation
raw moments and limited moments for the Inverse Pareto distribution
with parameters shape
and scale
.
dinvpareto(x, shape, scale, log = FALSE) pinvpareto(q, shape, scale, lower.tail = TRUE, log.p = FALSE) qinvpareto(p, shape, scale, lower.tail = TRUE, log.p = FALSE) rinvpareto(n, shape, scale) minvpareto(order, shape, scale) levinvpareto(limit, shape, scale, order = 1)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape, scale |
parameters. Must be strictly positive. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
The inverse Pareto distribution with parameters shape
= a and scale
= s has density:
f(x) = a s x^(a - 1)/(x + s)^(a + 1)
for x > 0, a > 0 and s > 0.
The kth raw moment of the random variable X is E[X^k], -shape < k < 1.
The kth limited moment at some limit d is E[min(X, d)^k], k > -shape.
dinvpareto
gives the density,
pinvpareto
gives the distribution function,
qinvpareto
gives the quantile function,
rinvpareto
generates random deviates,
minvpareto
gives the kth raw moment, and
levinvpareto
calculates the kth limited moment.
Invalid arguments will result in return value NaN
, with a warning.
Evaluation of levinvpareto
is done using numerical integration.
The "distributions"
package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
exp(dinvpareto(2, 3, 4, log = TRUE)) p <- (1:10)/10 pinvpareto(qinvpareto(p, 2, 3), 2, 3) minvpareto(0.5, 1, 2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.