The “Beta Integral”
The “beta integral” which is just a multiple of the non regularized incomplete beta function. This function merely provides an R interface to the C level routine. It is not exported by the package.
betaint(x, a, b)
x |
vector of quantiles. |
a, b |
parameters. See Details for admissible values. |
Function betaint
computes the “beta integral”
B(a, b; x) = Gamma(a + b) int_0^x t^(a-1) (1-t)^(b-1) dt
for a > 0, b != -1, -2, … and
0 < x < 1.
(Here Gamma(a) is the function implemented
by R's gamma()
and defined in its help.)
When b > 0,
B(a, b; x) = Γ(a) Γ(b) I_x(a, b),
where I_x(a, b) is pbeta(x, a, b)
. When b < 0,
b != -1, -2, …, and a > 1 + floor(-b),
B(a, b; x) = -Gamma(a+b) {(x^(a-1) (1-x)^b)/b + [(a-1) x^(a-2) (1-x)^(b+1)]/[b(b+1)] + … + [(a-1)…(a-r) x^(a-r-1) (1-x)^(b+r)]/[b(b+1)…(b+r)]} + [(a-1)…(a-r-1)]/[b(b+1)…(b+r)] Gamma(a-r-1) * Gamma(b+r+1) I_x(a-r-1, b+r+1),
where r = floor(-b).
This function is used (at the C level) to compute the
limited expected value for distributions of the transformed beta
family; see, for example, levtrbeta
.
The value of the integral.
Invalid arguments will result in return value NaN
, with a warning.
The need for this function in the package is well explained in the introduction of Appendix A of Klugman et al. (2012). See also chapter 6 and 15 of Abramowitz and Stegun (1972) for definitions and relations to the hypergeometric series.
Vincent Goulet vincent.goulet@act.ulaval.ca
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, Dover.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
x <- 0.3 a <- 7 ## case with b > 0 b <- 2 actuar:::betaint(x, a, b) gamma(a) * gamma(b) * pbeta(x, a, b) # same ## case with b < 0 b <- -2.2 r <- floor(-b) # r = 2 actuar:::betaint(x, a, b) ## "manual" calculation s <- (x^(a-1) * (1-x)^b)/b + ((a-1) * x^(a-2) * (1-x)^(b+1))/(b * (b+1)) + ((a-1) * (a-2) * x^(a-3) * (1-x)^(b+2))/(b * (b+1) * (b+2)) -gamma(a+b) * s + (a-1)*(a-2)*(a-3) * gamma(a-r-1)/(b*(b+1)*(b+2)) * gamma(b+r+1)*pbeta(x, a-r-1, b+r+1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.