Empirical Limited Expected Value
Compute the empirical limited expected value for individual or grouped data.
elev(x, ...) ## Default S3 method: elev(x, ...) ## S3 method for class 'grouped.data' elev(x, ...) ## S3 method for class 'elev' print(x, digits = getOption("digits") - 2, ...) ## S3 method for class 'elev' summary(object, ...) ## S3 method for class 'elev' knots(Fn, ...) ## S3 method for class 'elev' plot(x, ..., main = NULL, xlab = "x", ylab = "Empirical LEV")
x |
a vector or an object of class |
digits |
number of significant digits to use, see
|
Fn, object |
an R object inheriting from |
main |
main title. |
xlab, ylab |
labels of x and y axis. |
... |
arguments to be passed to subsequent methods. |
The limited expected value (LEV) at u of a random variable X is E[X ^ u] = E[min(X, u)]. For individual data x[1], …, x[n], the empirical LEV En[X ^ u] is thus
En[X ^ u] = (sum(x[j] < u; 1) + sum(x[j] >= u; u))/n.
Methods of elev
exist for individual data or for grouped data
created with grouped.data
. The formula in this case is
too long to show here. See the reference for details.
For elev
, a function of class "elev"
, inheriting from the
"function"
class.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.
grouped.data
to create grouped data objects;
stepfun
for related documentation (even though the
empirical LEV is not a step function).
data(gdental) lev <- elev(gdental) lev summary(lev) knots(lev) # the group boundaries lev(knots(lev)) # empirical lev at boundaries lev(c(80, 200, 2000)) # and at other limits plot(lev, type = "o", pch = 16)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.