Fuzzy Correspondence Analysis and Fuzzy Principal Components Analysis
Theses functions analyse a table of fuzzy variables.
A fuzzy variable takes values of type a=(a1,…,ak) 
giving the importance of k categories.
A missing data is denoted (0,...,0).
Only the profile a/sum(a) is used, and missing data are replaced by
the mean profile of the others in the function prep.fuzzy.var. See ref. for details.
prep.fuzzy.var (df, col.blocks, row.w = rep(1, nrow(df))) dudi.fca(df, scannf = TRUE, nf = 2) dudi.fpca(df, scannf = TRUE, nf = 2)
df | 
 a data frame containing positive or null values  | 
col.blocks | 
 a vector containing the number of categories for each fuzzy variable  | 
row.w | 
 a vector of row weights  | 
scannf | 
 a logical value indicating whether the eigenvalues bar plot should be displayed  | 
nf | 
 if scannf FALSE, an integer indicating the number of kept axes  | 
The function prep.fuzzy.var returns a data frame with the attribute col.blocks. 
The function dudi.fca returns a list of class fca and dudi (see dudi) containing also
cr | 
 a data frame which rows are the blocs, columns are the kept axes, and values are the correlation ratios.  | 
The function dudi.fpca returns a list of class pca and dudi (see dudi) containing also
cent
norm
blo
indica
FST
inertia
Daniel Chessel 
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
Chevenet, F., Dolédec, S. and Chessel, D. (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309.
w1 <- matrix(c(1,0,0,2,1,1,0,2,2,0,1,0,1,1,1,0,1,3,1,0), 4, 5)
w1 <- data.frame(w1) 
w2 <- prep.fuzzy.var(w1, c(2, 3))
w1
w2 
attributes(w2)
data(bsetal97)
w <- prep.fuzzy.var(bsetal97$biol, bsetal97$biol.blo)
if(adegraphicsLoaded()) {
  g1 <- plot(dudi.fca(w, scann = FALSE, nf = 3), plabels.cex = 1.5)
} else {
  scatter(dudi.fca(w, scann = FALSE, nf = 3), csub = 3, clab.moda = 1.5)
  scatter(dudi.fpca(w, scann = FALSE, nf = 3), csub = 3, clab.moda = 1.5)
}
## Not run: 
w1 <- prep.fuzzy.var(bsetal97$biol, bsetal97$biol.blo)
w2 <- prep.fuzzy.var(bsetal97$ecol, bsetal97$ecol.blo)
d1 <- dudi.fca(w1, scannf = FALSE, nf = 3)
d2 <- dudi.fca(w2, scannf = FALSE, nf = 3)
plot(coinertia(d1, d2, scannf = FALSE))
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.