Transformation of K distance matrices (object 'kdist') into K Euclidean representations (object 'ktab')
The function creates a ktab
object with the Euclidean representations from a kdist
object. Notice that the euclid attribute must be TRUE for all elements.
kdist2ktab(kd, scale = TRUE, tol = 1e-07)
kd |
an object of class |
scale |
a logical value indicating whether the inertia of Euclidean representations are equal to 1 (TRUE) or not (FALSE). |
tol |
a tolerance threshold, an eigenvalue is considered equal to zero if |
returns a list of class ktab
containing for each distance of kd
the data frame of its Euclidean representation
Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr
data(friday87) fri.w <- ktab.data.frame(friday87$fau, friday87$fau.blo, tabnames = friday87$tab.names) fri.kd <- lapply(1:10, function(x) dist.binary(fri.w[[x]], 10)) names(fri.kd) <- substr(friday87$tab.names, 1, 4) fri.kd <- kdist(fri.kd) fri.ktab <- kdist2ktab(kd = fri.kd) fri.sepan <- sepan(fri.ktab) plot(fri.sepan) tapply(fri.sepan$Eig, fri.sepan$TC[,1], sum) # the sum of the eigenvalues is constant and equal to 1, for each K tables fri.statis <- statis(fri.ktab, scan = FALSE, nf = 2) round(fri.statis$RV, dig = 2) fri.mfa <- mfa(fri.ktab, scan = FALSE, nf = 2) fri.mcoa <- mcoa(fri.ktab, scan = FALSE, nf = 2) apply(fri.statis$RV, 1, mean) fri.statis$RV.tabw plot(apply(fri.statis$RV, 1, mean), fri.statis$RV.tabw) plot(fri.statis$RV.tabw, fri.statis$RV.tabw)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.