Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

randtest.discrimin

Monte-Carlo Test on a Discriminant Analysis (in C).


Description

Test of the sum of a discriminant analysis eigenvalues (divided by the rank). Non parametric version of the Pillai's test. It authorizes any weighting.

Usage

## S3 method for class 'discrimin'
randtest(xtest, nrepet = 999, ...)

Arguments

xtest

an object of class discrimin

nrepet

the number of permutations

...

further arguments passed to or from other methods

Value

returns a list of class randtest

Author(s)

Examples

data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3)
rand1 <- randtest(discrimin(pca1, meaudret$design$season, scan = FALSE), 99)
rand1
#Monte-Carlo test
#Observation: 0.3035 
#Call: as.randtest(sim = sim, obs = obs)
#Based on 999 replicates
#Simulated p-value: 0.001 
plot(rand1, main = "Monte-Carlo test")
summary.manova(manova(as.matrix(meaudret$env)~meaudret$design$season), "Pillai")
#                   Df Pillai approx F num Df den Df  Pr(>F)    
# meaudret$design$season  3   2.73    11.30     27     30 1.6e-09 ***
# Residuals         16                                          
# ---
# Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
# 2.731/9 = 0.3034

ade4

Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences

v1.7-16
GPL (>= 2)
Authors
Stéphane Dray <stephane.dray@univ-lyon1.fr>, Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>, and Jean Thioulouse <jean.thioulouse@univ-lyon1.fr>, with contributions from Thibaut Jombart, Sandrine Pavoine, Jean R. Lobry, Sébastien Ollier, Daniel Borcard, Pierre Legendre, Stéphanie Bougeard and Aurélie Siberchicot. Based on earlier work by Daniel Chessel.
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.