Monte-Carlo Test on a Discriminant Analysis (in R).
Test of the sum of a discriminant analysis eigenvalues (divided by the rank). Non parametric version of the Pillai's test. It authorizes any weighting.
## S3 method for class 'discrimin' rtest(xtest, nrepet = 99, ...)
xtest |
an object of class |
nrepet |
the number of permutations |
... |
further arguments passed to or from other methods |
returns a list of class rtest
Daniel Chessel
data(meaudret) pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3) rand1 <- rtest(discrimin(pca1, meaudret$design$season, scan = FALSE), 99) rand1 #Monte-Carlo test #Observation: 0.3035 #Call: as.rtest(sim = sim, obs = obs) #Based on 999 replicates #Simulated p-value: 0.001 plot(rand1, main = "Monte-Carlo test") summary.manova(manova(as.matrix(meaudret$env)~meaudret$design$season), "Pillai") # Df Pillai approx F num Df den Df Pr(>F) # meaudret$design$season 3 2.73 11.30 27 30 1.6e-09 *** # Residuals 16 # --- # Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 # 2.731/9 = 0.3034
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.