Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

score.pca

Graphs to Analyse a factor in PCA


Description

performs the canonical graph of a Principal Component Analysis.

Usage

## S3 method for class 'pca'
score(x, xax = 1, which.var = NULL, mfrow = NULL, csub = 2, 
    sub = names(x$tab), abline = TRUE, ...)

Arguments

x

an object of class pca

xax

the column number for the used axis

which.var

the numbers of the kept columns for the analysis, otherwise all columns

mfrow

a vector of the form "c(nr,nc)", otherwise computed by a special own function n2mfrow

csub

a character size for sub-titles, used with par("cex")*csub

sub

a vector of string of characters to be inserted as sub-titles, otherwise the names of the variables

abline

a logical value indicating whether a regression line should be added

...

further arguments passed to or from other methods

Author(s)

Daniel Chessel

Examples

data(deug)
dd1 <- dudi.pca(deug$tab, scan = FALSE)
score(dd1)
 
# The correlations are :
dd1$co[,1]
# [1] 0.7925 0.6532 0.7410 0.5287 0.5539 0.7416 0.3336 0.2755 0.4172

ade4

Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences

v1.7-16
GPL (>= 2)
Authors
Stéphane Dray <stephane.dray@univ-lyon1.fr>, Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>, and Jean Thioulouse <jean.thioulouse@univ-lyon1.fr>, with contributions from Thibaut Jombart, Sandrine Pavoine, Jean R. Lobry, Sébastien Ollier, Daniel Borcard, Pierre Legendre, Stéphanie Bougeard and Aurélie Siberchicot. Based on earlier work by Daniel Chessel.
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.