Compute allelic frequencies
makefreq(x, ...) ## S4 method for signature 'genind' makefreq(x, quiet = FALSE, missing = NA, truenames = TRUE, ...) ## S4 method for signature 'genpop' makefreq(x, quiet = FALSE, missing = NA, truenames = TRUE, ...)
There are 3 treatments for missing values:
- NA: kept as NA.
- 0:
missing values are considered as zero. Recommended for a PCA on
compositionnal data.
- "mean": missing values are given the mean
frequency of the corresponding allele. Recommended for a centred PCA.
Note that this function is now a simple wrapper for the accessor tab
.
Returns a list with the following components:
tab |
matrix of allelic frequencies (rows: populations; columns: alleles). |
nobs |
number of observations (i.e. alleles) for each population x locus combinaison. |
call |
the matched call |
Thibaut Jombart t.jombart@imperial.ac.uk
## Not run: data(microbov) obj1 <- microbov obj2 <- genind2genpop(obj1) # perform a correspondance analysis on counts data Xcount <- tab(obj2, NA.method="zero") ca1 <- dudi.coa(Xcount,scannf=FALSE) s.label(ca1$li,sub="Correspondance Analysis",csub=1.2) add.scatter.eig(ca1$eig,nf=2,xax=1,yax=2,posi="topleft") # perform a principal component analysis on frequency data Xfreq <- makefreq(obj2, missing="mean") Xfreq <- tab(obj2, NA.method="mean") # equivalent to line above pca1 <- dudi.pca(Xfreq,scale=FALSE,scannf=FALSE) s.label(pca1$li,sub="Principal Component Analysis",csub=1.2) add.scatter.eig(pca1$eig,nf=2,xax=1,yax=2,posi="top") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.